
BALL SORTING MACHINE: Chaos.Bot 2004

AER201Y:Engineering Design

Instructor: Dr. M. Reza Emami

TA: Ryan Martens

Team: #60
Members: Jan-Hung Chen

Engineering Science 0T6 Stephanie Elaine Gar-Wai Chiu
 Aditya Ganti Mahapatruni

Date: Tuesday, March 23rd 2004

 I

ACKNOWLEDGMENTS

Team 60 would like to thank the following people/groups/inanimate objects (in no
particular order):

Professor Emami for being helpful and attentive, Ryan Martens for sympathizing,
Stephanie’s family for listening to her rants, food, Aditya’s uncle for providing
transportation, fellow design teams for help and support, Microchip© for free PIC chips,
food, Blue Tack© and Scotch tape for holding everything together, purveyors of cheap
food, the patient staff at Supremetronic Inc., the Eng Sci computer lab regulars, food, the
cold Canadian winter for keeping us awake, and food (did we mention that already?).

 II

ABSTRACT

This report documents the technical aspects of the design process of a ball-sorting
machine. The project was initiated by a request for proposal put forth by a sports utility
retailer. The main functional requirements of the machine were that it had to sort up to
twenty balls at a time into their different types: tennis, golf, squash, white ping-pong, and
orange ping-pong. The machine was to be fully automated, with the balls being sorted in
less than two minutes with the press of a start button. The solution involved coordination
between three team members, each working on his or her own subsystem and eventually
integrating the components together. These subsystems were the electromechanical,
microcontroller, and circuits systems. The general concept for the design was a series of
sorting ramps. The balls moved down the machine, from ramp to ramp, with one type
being sorted out at each ramp. The final result for the most part met the goals set out at
the beginning. The machine was simple and fast, utilizing gravity and sorting twenty
assorted balls in less than thirty seconds. However, this resulted in less control over the
flow of the balls and therefore some inconsistency in sorting and counting.

 III

 TABLE OF CONTENTS
Acknowledgements……………………………………………………………………….II
Abstract…………………………………………………………………………………. III
Table of Contents………………………………………………………………………...IV
Abbreviations…………………………………………………………………………….VI
Notation…………………………………………………………………………………..VI

CHAPTER 1……………………………………………………………………………...1
Introduction, Project Concept, Design Parameters, History, Limitations, Budget, Problem Division
1.1 Introduction………………………………………………………………………..2
1.2 Project Concept.…………………………………………………………………...2

1.2.1 Acceptance Criteria and Design Parameters……………………………....2
1.3 Perspective……………………………………………………...………………….4

History and Background
1.4 Design Limitations…………………………………………………………………5
1.5 Budget ……………………………………………………………………………..8

1.5.1 Electromechanical expenditure…………………………………………….8
1.5.2 PIC Microcontroller expenditure…………………………………………..8
1.5.3 Circuits expenditure………………………………………………………..9

1.6 Division of the Problem…………………………………………………………..10
1.6.1 Microcontroller……………………………………………………………10
1.6.2 Electromechanical…………………………………………………………10
1.6.3 Circuits…………………………………………………………………….10

CHAPTER 2: Electromechanical…………………………………….…….……………11
2.1 Assessment of the problem…………………………………………….......12
2.2 Solution…………………………………………………………………….12

2.2.1 Loading bin mechanism……………………………………………………12
2.2.2 Sorting sequence…………………………………………………………...13
2.2.3 Parallel sorting……………………………………………………………..14
2.2.4 Distinguishing white from orange ping-pong……………………………...14
2.2.5 Counting……………………………………………………………………15
2.2.6 Materials selection …………………………………………………………15

2.3 Suggestions for improvement………………………………………………15

CHAPTER 3: Circuits
3.1 Assessment of the problem………………………………………………………...19
3.2 Solution…………………………………………………………………………….20

3.2.1 Counting……………………………………………………………………20
3.2.2 Actuators……………………………………………………………………22
3.2.3 PIC interface………………………………………………………………..22
3.2.4 Power distribution…………………………………………………………..23

3.3 Suggestions for improvement………………………………………………………23

CHAPTER 4: PIC Microcontroller
4.1 Assessment of the problem…………………………………………...……………25

 IV

4.2 Solution…………………………………………………………………………….25
4.2.1 Timer……………………………………………………………………….25
4.2.2 LCD Connection…………………………………………………………...25
4.2.3 Keypad connection…………………………………………………………26
4.2.4 PIC………………………………………………………………………….27

4.3 Suggestions for improvement…………………………………………...………….27

CHAPTER 5
Integration, Improvement suggestions, limitations, conclusions, Results
5.1 Integration………………………………………………………………………….29

5.1.1 Circuit mounting on machine frame………………………………………..29
5.1.2 Loading bin…………………………………………………………………29
5.1.3 Contact switch placement…………………………………………………..29
5.1.4 Integration of colour sensor box.……………………………………………30
5.1.5 PIC integration………………………………………………………………30
5.1.6 Ping-pong rate control………………………………………………………31
5.1.7 Debugging…………………………………………………………………..31
5.1.8 Testing………………………………………………………………………31

5.2 System improvement suggestions…………………………………………………..32
5.3 Limitations and restrictions imposed by current methods………………………….33
5.4 Conclusions…………………………………………………………………………34
5.5 Results………………………………………………………………………………34

CHAPTER 6:
6.1 References………………………………………………………………………….36
6.2 Bibliography………………………………………………………………………..36
6.3 Appendix A—Pin Descriptions……………………………………………………A-1
6.4 Appendix B—Sample Calculations………………………………………………..B-1
6.5 Appendix C—Circuit Schematics………………………………………………….C-1
6.6 Appendix D—Machine Schematics………………………………………………..D-1
6.7 Appendix E—Photos…………………………………………………………… …E-1
6.8 Appendix F—Standard Operating Procedure………………………………………F-1
6.9 Appendix G--Microcontroller Algorithm and Code……………………………….G-1
6.10 Appendix H—Datasheets…………………………………………………………..H-1

 V

ABBREVIATIONS

AC Alternating Current
CMOS Complementary Metal Oxide Semiconductor
DC Direct Current
EPROM Erasable Programmable Read Only Memory
IC Integrated Chip
I/O Input/Output
IR Infrared
LCD Liquid Crystal Display
LED Light Emitting Diode
LS Low power Schottky
PIC Peripheral Interface Controller
RA0, RC2, etc. Pins on input/output ports A, C, etc.
RAM Random Access Memory
SPDT Single-pole double-throw (switch)
TTL Transistor-Transistor Logic

NOTATION

C Capacitance, units are Farads [F]
R Resistance, units are Ohms [Ω]
thigh Time interval spent on high logic level, units are Seconds [s]
tlow Time interval spent on low logic level, units are Second [s]

 VI

CHAPTER 1:
Introduction, Project Concept, Design Parameters, History, Limitations, Budget, Problem Division

 1

1.1 INTRODUCTION

The task at hand, as requested by a sports utility retailer, was to build an
automated machine that takes in an assortment of up to twenty balls made up of tennis,
squash, golf, white ping-pong and orange ping-pong balls and sorts them according to
type and colour. The entire operation was to be performed in under two minutes and run
with only the push of a start button.

While it is possible to sort tennis, golf, squash and ping-pong balls by hand, a business
would greatly benefit from an automated machine that performs this task accurately, such
as the final result of this project. Obviously, customers expect inventory to be properly
sorted and conveniently located at all times. Therefore, it is necessary to constantly
ensure that the balls are sorted. Delegating this responsibility to employees means that
they have less time to perform more important and less tedious tasks. An automated ball-
sorting machine will free up time and get the task done quickly and accurately without
supervision.

1.2 PROJECT CONCEPT

The final design of the machine sorts out each type of ball in different stages.

Each stage of the sorting machine utilizes one characteristic to isolate one type of ball
and some sort of counting mechanism to record the number of balls of that type that pass
by. Each type of ball is collected in its own bin as the balls are sorted. The sorting
operation begins with the press of a button and ends automatically when all the balls are
sorted and counted. At the end of the operation, sorting statistics on the number of balls
in each category, the total number of balls, and the total operation time are displayed
depending on which buttons the user presses. All that is required to power the machine is
to plug it into an AC wall socket.

1.2.1 Acceptance Criteria and Design Parameters

To reach these goals, specific objectives were needed to strive for the best design
possible:

• Easy to use: The balls should be easy to load, the display should provide clear and

simple communication with the user, and sorted balls should be easily retrievable
• Easy to produce: The design must be manufactured given a limited amount of

time and resources
• Time efficient: The design should sort the balls as quickly as possible, since

twenty balls must be sorted in two minutes

 2

• Weight and size efficient: The machine can weigh no more than ten kilograms
and must fit in a 1.5 x 1.5 x 1.5 m3 envelope

• Energy efficient: Power consumption of the machine should be kept to a
minimum

• Cost efficient: Given the budget constraints, design should consist of affordable
components

• Safe: The machine should run smoothly and pose no hazard to the user
• Reliable: The machine must always sort the balls and give information accurately.

The machine should never freeze or jam during operation. Also, the machine
should be able to deliver repeatedly the same quality of results.

• Be equipped to handle all cases: The design must accommodate any combination
of balls, including, for example, twenty tennis balls

• Simple and elegant: The design should be as simple as the goal allows, making it
easier to fabricate at a high quality and easier to adjust or fix

• Fully automated: All that the user should have to do to operate the machine is
load the balls into a bin and press a button on the keypad

 3

1.3 PERSPECTIVE

History and Background

The availability of ball sorting machines presently is very limited. In fact,

machines that sort tennis, golf, squash and ping-pong balls simply cannot be found.
There exist devices that sort other types of balls and on different scales, but even these
are few and far between. Examples include a machine that collects, washes, and sorts
hollow plastic balls found in recreational ball pits and a simpler ball-sorting device
consisting of a plastic container with a few sieve-like boundaries that sort out small
objects into different levels. The most applicable designs prior to this project were built
by students at the University of Melbourne. Their task was to sort tennis and ping-pong
balls into groups of three, each with one tennis ball and two ping-pong balls. The most
common construction materials used were cardboard and duct tape and the designs
required no power. While this began to approach the level of complexity needed for the
problem presented, our design encompasses more sorting mechanisms and calls for a
more lasting prototype. It also includes means of communicating useful statistics from
the sorting operation to the user.

 4

1.4 DESIGN LIMITATIONS

A device was needed for the project that would make the machine intelligent so

the user could communicate with it to get the sorting statistics and have better control of
the machine. Presently, two popular solutions to this problem are the microprocessor and
microcontroller.
Microprocessors and microcontrollers are, in one sense, the same thing. They all have an
ASIC (Application Specific Integrated Circuit) that fetches and executes instructions
based on the programs stored in them. These devices are controlled by software and have
great flexibility in terms of their functions.

The first “microprocessor” was created by Intel in 1971. In the three decades since the
invention of the first microprocessor, there has been tremendous development and
innovation in this field of engineering. All kinds of microprocessors and microcontrollers
have been invented and they all have different application spaces and features. A typical
microprocessor or microcontroller includes the following: a CPU (central processing
unit), RAM (Random Access Memory), EPROM/PROM/ROM (Erasable Programmable
Read Only Memory), and I/O (Input/Output) ports with interrupt service.

Nowadays, microprocessors are often used for more advanced applications because of its
high processing speed and ability of handle complex system. However, they also require
additional system such as external RAM, ROM and I/O conversion.

Microcontrollers are typically used at what is called the "low-end" of computing since
they are a lot slower compared to microprocessors. However, this does not mean that
microcontrollers are less useful. They are designed to target specific applications which
are self-contained and involve limited input and output. For the proposed design, which
has these characteristics, microcontrollers are an ideal choice because of their low cost,
low power consumption and simplicity.

Simpler integrated chips (IC’s) are available as common circuit components as they are
abundantly available and extremely affordable. There are two main families of chips in
the market: transistor-transistor logic (TTL) and complementary metal oxide
semiconductor (CMOS). They differ in the type of transistor used to drive the circuits
(Course notes, 5-42), which has a large impact on some of their important characteristics.
In general, CMOS chips can operate on a wider range of voltages and require less current
and therefore less power to drive their circuitry. However, they are more sensitive to
static electricity and can be damaged more easily. Also, they are not suited to the higher
frequencies needed by the microcontroller. In this project, 7400 series TTL chips were
used, and in particular, the low power Schottky (LS) variety. The only exception is the
4050 buffer. Despite the fact that this chip is a CMOS chip, it is still capable of driving
TTL logic chips.

One chip central to this project is the NE555 timer. It is capable of producing a square
wave signal of very precise pulse width based on an external resistor-capacitor (RC)

 5

circuit. As the RC circuit charges and discharges according to the time constant
dependent on the resistor and capacitor used, the signal oscillates between the two logic
levels (Course notes, 5-50). When the timer is used in astable mode, the time periods
spent on each logic level are given below:

thigh = 0.693CR1 (1)
tlow = 0.693CR2 (2)

where R represent the resistor value and C represents the capacitor value. Circuits using
this principle are described in the circuits subsystem, along with sample calculations.

Mechanical components such as D.C motors, servomotors and solenoids have been in use
since the late 19th century. Miniature and specific mechanical components have to be
produced and are used extensively in various industries. Modern applications include
cars, airplanes and robots.

A Servo is a small device that incorporates a three wire DC motor, a gear train, a
potentiometer, an integrated circuit, and an output shaft bearing. Of the three wires that
stick out from the motor casing, one is for power, one is for ground, and one is a control
input line. The shaft of the servo can be positioned to specific angular positions by
sending a coded signal. As long as the coded signal exists on the input line, the servo will
maintain the angular position of the shaft. If the coded signal changes, then the angular
position of the shaft changes.

A solenoid is an electro-mechanical component that converts electrical energy into
mechanical power. Electrical current is supplied to a tight coil and the resulting magnetic
field is increased by surrounding the coil with a highly permeable iron frame. The
magnetic field then acts upon a plunger, drawing it from its unpowered, extended
position to a seated position against a backstop or pole piece. The linear force on the
plunger from the magnetic field is extremely nonlinear with position, i.e. the force is
relatively high immediately adjacent to the seated position and falls off rapidly with
increased distance from the seated position.

Many rotary solenoids have the same fundamental design as a linear push-pull solenoid.
Linear motion is translated into rotary motion via three small bearing balls that ride on an
inclined plane as the plunger closes, converting a relatively small axial motion into a
rotary stroke. True rotary solenoids operate on similar principles, but the magnetic
arrangement allows for direct rotational motion with no attendant axial stroke. As with
linear solenoids, the torque from the plunger is greatest near the energized, seated
position. Short-stroke solenoids have, in general, greater starting torque than longer
stroke solenoids of the same construction.

Materials selection and fabrication is something that can be learnt only through trial and
error and experience. In this project, a first machine was built whose frame was made out
of wood. Upon realization that it was too heavy, the design was changed to a metal frame
because it was more elegant and lighter. The final prototype of the machine contains one

 6

HS311 standard servo powered at 5V, one rotary solenoid powered at 12V and a DC
motor powered at 12V, as well as metal for the frame, wood dowels, foamboard and
coroplast ® corrugated plastic sheet. These components and materials are abundantly
available and are easy to work with.

 7

1.5 BUDGET

1.5.1 Electromechanical

Item Quantity
Used

Unit Cost(C$) Total Cost
(C$) (inc.
Tax)

Supplier

1 2x1/2x1/16” metal
frame

3 6.90 23.81 Rona Home and
Garden

2 3/8 x 36” wood square
dowel

15 0.99 17.08

3 4-40 x ½” 2 1.29 2.96
4 4-40 x ¾” 2 1.29 2.96
5 Chain for loading bin 1 0.44 0.51
6 Braces and brackets 12 0.29 4.00
7 Loading Bin container 1 3.49 4.01
8 Metal rod

(to support loading bin)
1 0.75 0.86

Canadian Tire

9 Foam board std. size 1 5.49 6.31 Grand and Toy
10 Collecting bins

(varying sizes)
5 1.00 5.75 Dollarama

11 HITEC HS311
Standard Servo motor

1 14.00 14.00 Online
www.hitecrcd.com

12 DC motor with gearbox 1 4.95 4.95
13 30ο Rotary solenoid 1 2.95 2.95
14 Coroplast plastic 1 0.75 0.75

Active Surplus

15 Contact switches with
roller tips

3 1.00 3.45 Supremetronic Inc.

16 Miscellaneous copper
and aluminium sheets

 0.30 0.30 Machine shop

Electromechanical Subsystem Total
$95.35

1.5.2 PIC Microcontroller
17 PIC 16F877A with PIC

Development board
1 30.00 30.00 Design Store,

Microchip
www.microchip.com

18 MM74C922N keypad
encoder

1 6.00 6.00

19 16x1 LCD display 1 6.00 6.00
20 4x4 Keypad 1 4.00 4.00

Design Store

PIC Subsystem Total $46.00

 8

1.5.3 Circuits
Item Quantity

Used
Unit Cost(C$) Total Cost

(C$) (inc.
Tax)

Supplier

21 74LS279 RS Latch 1 0.70 0.70
22 Superbright white LED 2 1.75 3.50
23 CL138 Phototransistor 2 0.75 1.50
24 100K trimmer

potentiometer
2 1.50 3.00

25 74LS14 Schmitt trigger
inverter

2 0.70 1.40

26 4050 Buffer 5 0.70 3.50
27 LM358 OP AMP 1 0.70 0.70
28 NE555 timer 4 0.85 3.40
29 74LS157 quad 2 to 1

multiplier
1 0.70 0.71

30 1N4148 diode 4 0.10 0.40
31 1N4004 diode 1 0.15 0.15
32 TIP 122 transistor 2 0.85 1.70
33 TIP 30 transistor 1 0.85 0.85
34 7404 NOT gate 2 0.70 1.40
35 TIP 112 transistor 1 0.85 0.85
36 Double header male

strip
1 0.35 0.35

37 8-pin IC socket 5 0.05 0.25
38 14-pin IC socket 3 0.08 0.24
39 16-pin IC socket 7 0.09 0.63
40 18-pin IC socket 1 0.10 0.10
41 Capacitor 10 0.10 1.00
42 Resistor 30 0.01 0.30
43 Power supply 1 10.00 10.00
44 Circuit solder boards

(IC type)
2 3.15 6.30

45 Circuit solder boards
(8x4 block type)

2 1.65 3.30

46 Ribbon cable 4ft 0.35/ft 1.40
47 Small mounting screws 30 0.02 0.60
48 Solid wire 15ft 0.05/ft 0.75
49 Stranded wire 75ft 0.05/ft 3.75
50 3-pin molex connectors 4 0.20 0.80
51 2-pin molex connectors 35 0.15 5.25
 Circuits Subsystem total $58.78

Supremetronic Inc,
Active Surplus
Electronics and Above
all Electronics Surplus
Ltd.

GRAND TOTAL C$199.93

The total amount spent on constructing the machine was C$199.93. This includes the amounts for each
subsystem, and is within the proposed amount of $200.

 9

1.6 DIVISION OF THE PROBLEM

On this project, the work was split up into three subsystems, with each team member
assigned to one of the specialties. These subsystems were as follows:

1.6.1 Microcontroller: Jan, the microcontroller team member was responsible
for writing the software for the microcontroller, a device which can store and
execute a set of instructions. This included interfacing the keypad and LCD
display, sending out control signals to appropriate mechanisms, taking in signals
from counting circuits, count the balls based on these incoming signals, and count
the amount of time elapsed during each sorting operation. After the program code
was developed, Jan also aided the electromechanical member in constructing the
physical aspects of the machine.

1.6.2 Electromechanical: The electromechanical member, Aditya, was in
charge of building the machine’s physical structure, incorporating actuating
mechanisms into the operation of the machine, and determining positioning of
components. Actuating mechanisms include opening the loading bin into which
the unsorted balls are poured and any other moving parts that control the flow of
the balls.

1.6.3 Circuits: This subsystem was the responsibility of Stephanie, who was to
supply power to the machine and design and construct the circuits to interface
with the microcontroller and drive the mechanisms. This included control of
actuators and directing input from ball sensors to the microcontroller.

In the integration stage that followed the assembly of each subsystem, all team

members worked to incorporate all the elements together and the distinctions became less
important.

 10

CHAPTER 2: Electromechanical Subsystem

 11

2.1 ASSESSMENT OF THE PROBLEM
The ball sorting machine is expected to sort into separate containers each of tennis, golf,
squash, white and orange ping-pong balls. Moreover, it must do so within 2 minutes,
without generating loud sound. The loading bin mechanism must be a stocking
mechanism as opposed to a sort-as-you-load mechanism. This means that balls are stored
in a reserve until a button is pressed which actuates the sorting sequence(s). Sorting is to
be done by size, weight and colour as applicable. A mechanism had to be implemented to
put a suitable separation between ping-pong balls entering the colour sensor. Within the
colour sensor itself, a mechanism to separate white ping-pong from orange ping-pong had
to be implemented. A method had to be found to speed up the running time. Finally, the
materials to be used in machine fabrication had to be lightweight and easily workable.

2.2 SOLUTION

1. 2.2.1 Loading bin mechanism: The mechanism was implemented using a store-
bought loading bin as shown on the left. The
bottom part of the loading bin was cut away,
and a foamboard flap was attached in the
opening using chains. This allowed the flap to
be free hanging such that even a single ping-
pong exerted enough force on it to move past
it. The stocking mechanism was implemented

using a HiTec HS-311 standard servomotor, powered at 5V. The servo is
connected to an arm which sticks up and covers the middle of the flap.

Figure2.1: Loading bin

When 20 assorted balls are loaded into the bin, taking configuration to be approximately
5 tennis (60g each), 4 golf (46g each), 3 squash (24g each) and 8 ping-pong balls (3g
each), the total weight adds up to 580grams resting against the arm of the servo. Taking a
factor of safety of 1.3 for a 3.8cm arm attached to the servo, a torque of 2.87kg.cm[1] is
placed on the servo.

[1] Refer to appendix B for calculations

 12

The torque for this model is rated at slightly higher than 3.0kg.cm[2] when powered at
5.0V. This torque is more than sufficient when an assorted combination of balls weighing
750g needs to be sorted.

2. 2.2.2 Sorting sequence: When the servo
opens, it turns 180o and the stored balls flow out
rapidly.
The machine implements a 4-stage sorting
sequence:

• Stage 1: Tennis ball is sorted from all other
smaller balls. The picture to the right shows
3 of the 4 stages. The topmost ramp has rails
that are wide enough for smaller balls, but
allow tennis balls to continue on to a collec
into the net and move onto stage 2.

• Stage 2: On this ramp, a large piece of foam board is attached to the underside
of the ramp to accelerate the balls. Golf is separated in a similar fashion to the
tennis balls: the rails are big enough to allow squash and ping-pong to drop
through, but not wide enough for the golf balls to drop through. Golf balls
move onto a collector ramp.

• Stage 3: Only squash and golf pass through from the previous two stages onto
this ramp. Here, one pair of rubber bands per ramp is used as a weight sensor.
They are stretched over long screws
attached to the side of the ramp. When a
squash ball (24grams) passes over this
arrangement, its weight causes it to drop
through the rubber bands and onto the
collecting ramps below, while the ping-
pong ball (3g) passes over the stretched
rubber bands.

[2] Refer to appendix for HS311 servo datasheet

Fig 2.3: Squash ball sorting arrangement
tor ramp. The smaller balls drop Figure 2.2: 3 stages of the sorting ramps
13

Stage 4: Stage 4 is the colour sensor box. However, before the ping-pong balls move into
the box, they are stored on a smaller ramp. A 12VD.C motor with gear combination is
used to feed the balls one-by-one into the colour sensor box. The motor is attached to a
Coroplast ® corrugated plastic cut into a H-shape as shown.
Every time the hole in the H-shape aligns with the hole on the
ping-pong storage ramp, one ping-pong ball drops through and
goes into the colour sensor ramp. The motor rotates roughly at a
speed allowing 2 ping-pong balls per second into the colour
sensor box.

Fig. 2.4: Corrugated

plastic of this shape is

attached to the D.C motor

3. 2.2.3 Parallel sorting: As identified under the problem assessment, time was an
important criterion. When it was realized from our unsuccessful first design that
sorting balls one-by-one was slow and caused jamming for later balls if the balls
in front got stuck, a better parallel sorting idea was implemented. So when the
loading bin servo is activated, balls pour onto two sets of ramps arranged side by
side. This parallel sorting continues up to stage 3.

4. 2.2.4 Distinguishing white from Orange ping-pong: Colour theory was used to
implement sorting between white and orange ping-pong balls. A super bright
white LED shines on the ball; reflected light from the ball shines on a

phototransistor covered with blue
filter paper. Why blue? Because
blue is complimentary to orange.

 (e.g. white = Red + Green + Blue;
Orange = Red+Green). A white ball
would be registered by low
resistance of the phototransistor
while an orange ball would be
characterized by much higher
resistance.

Fig. 2.5: Colour sensor interior, showing positions of
LED and phototransistor

 14

Depending on the resistance registered by the sensor, a rotary solenoid is activated (or
not). When activated, the solenoid rotates 30 degrees and moves a paper flap, which
allows the white ball to drop through but the orange ball continues uninterrupted.

5. 2.2.5 Counting: To count tennis, golf and squash balls,
switches with a roller at the end of their tips were used on
collecting ramps. White ping-pong is counted every time
the solenoid activates. Orange ping-pong is counted via a
break-beam sensor setup, where a continuously shining
beam of light falling on a phototransistor is broken by the
passing of an orange ball. When this happens, the count
is incremented by 1.

6. 2.2.6 Materials selection: Metal (Aluminium
was light, strong and relatively inexpensive c
rods were used for ramps. Collecting bins and
were some of the intermediary ramps.

2.3 SUGGESTIONS FOR IMPROVEMENT

The servomotor used cannot support the weight of mo
torque specifications are 3.0kg.cm for 5V. To operate
4.6kg.cm minimum.[3] This can be achieved using a m
of the same HS311 servos to open the loading bin so
weight of 10 tennis balls.

Design was changed and modified as seen fit. This le
materials (e.g. foam board, coroplast ® plastic) for the
the machine. An improvement would be to make one
type so that the machine looks elegant and clean.

Having a one-by-one feeding mechanism right at the
sorting and completely eliminates jamming problems.
be sorted, the running time would be slower, but so
close to 100%.

[3] See Appendix B for calculations

Fig. 2.6: Switch used for tennis, golf and
squash
 composite) was chosen because it
ompared to wood. Square wooden
 loading bin were store-bought, as

re than 12 tennis balls. Its current
20 tennis balls, its torque should be
ore powerful servo or by using two
that each servo carries an effective

ad to the use of different kinds of
 same purpose in different parts of
 material the standard for each job

 loading bin improves accuracy of
 If balls are released one-by-one to
rting accuracy would be improved

15

The problems presented above are summarized in the table below, showing salient
features of the electromechanical subsystem.

Problem Solutions considered Solution chosen Reason
Loading bin must
be a stocking
mechanism

• 12V DC motor-
controlled gate.

• Two solenoids to
block either side
of gate

• Servomotor to
block gate

Servomotor,
powered at 5V

The servo was the
only component that
had the required
torque to hold out
against a loaded bin
weighing 0.6kg

Increase separation
between ping-pong
balls going into the
colour sensor

• Linear solenoid
that activated
once every
second to let ball
pass through

• DC motor
rotating at a
certain frequency

• Increasing the
number of ramps
to increase
separation

DC motor Implementation was
easiest, and by
means of a simple
piece of corrugated
plastic, the desired
result was achieved

Distinguish white
from orange ping-
pong

• Linear solenoid
• Rotary solenoid

Rotary solenoid Rotary solenoid
kept the design
simple, and
eliminated the need
to stop the ball to
detect colour. So
colour could be
detected even when
the balls were in
motion.

Table 2.1: Comparison of major problems and solutions

 16

Contact cement was used to join foamboard to wood. Wood glue was used to attach wood
dowels together.

Table 2.2: Comparison of adhesives. Contact cement and white wood glue were extensively used in
machine fabrication

 17

CHAPTER 3: Circuits Subsystem

 18

3.1 ASSESSMENT OF THE PROBLEM

The major tasks to be accomplished by the circuits subsystem were to interface
with the PIC, drive the actuators, provide power, and assemble ball sensing mechanisms.
The approach taken called for minimal input and output to and from the PIC, with as
many of the circuit functions being independent as possible.

Counting

 Since one of the objectives of the design was to count the number of each kind of
ball that was sorted, some form of sensor and corresponding circuit was required for each
type of ball. For the tennis, golf, and squash balls, one contact switch was employed for
each. These consisted of a flat arm that closed the switch every time a ball rolled over it.
A circuit was needed for each to transmit the signal to the PIC and to smooth any
irregularities in the signal resulting from the contacts bouncing when brought together.

The only balls that had to be sorted using a method non-mechanical in nature were the
white and orange ping-pong balls. This task fell to the circuits subsystem, as the goal
here was to sort them without having to use the PIC to distinguish between the different
coloured balls. The most apparent approach to this problem was to use a blue filter paper
to filter out most of the light reflecting off of the orange balls, since blue and orange are
complementary colours. Light from a superbright white LED reflecting off of a white
ping-pong ball would still make it through the filter, since blue is a component of white
light. Then, by using some sort of light detector, a difference in voltage signals set off by
the two ball colours could be exploited. This had to be translated into a positive pulse
signal to the PIC and the momentary opening of the rotary solenoid underneath the
trapdoor leading to the white ping-pong ball bin. A similar but less complicated
mechanism was needed to detect the passage of the sorted orange balls in order to count
them. In this case, only the signal the PIC was needed. Simple contact switches could
not be used due to the tiny weight of the ping-pong balls.

Actuators

 The actuators that needed circuit control were the servo motor that acted as a gate
for the loading bin, the DC gearhead motor that provided spacing for the ping-pong balls,
and the rotary solenoid that allowed the white ping-pong balls to drop into their bin. The
only input to the servo and DC motor circuits was a signal from the PIC that was high
during the entire sorting operation and low at all other times. The servo circuit had to
hold the arm stationary and blocking the loading bin door while the signal was low and
then swing open by at least ninety degrees and hold while the signal was high. The
operation of the DC motor was much simpler, with the motor running while the signal
was high and stationary while the signal was low. Speed was not a concern because of
the gears on the motor, so speed control was not necessary. As opposed to the motors,

 19

the control of the rotary solenoid was independent of the PIC. The movement of the
solenoid was triggered by a light sensor that gave a positive pulse whenever a white ping-
pong ball rolled by it. The rotary solenoid was to open for a set time and then close on its
own.

PIC Interface

 Interfacing with the PIC consisted of a few tasks. First of all, the PIC had to be
connected to the keypad using a keypad encoder chip. The most essential task in terms of
fulfilling the main design objectives was connecting all the inputs and outputs. Besides
the keypad and LCD display, the only output from the PIC was the signal to the servo and
DC motors. The PIC also had to be hooked up to five signals coming from each ball
detector circuit. Finally, a means of counting the seconds of operation was needed, in
accordance with the design guidelines.

Power Distribution

 In order for the entire system to run, a means of supplying power to all the
circuits, the PIC development board, and the actuators was needed. Also important for
signal transmission was the need for a common ground among all the circuits.

3.2 SOLUTION

 Components of the machine design constantly evolved over the course of the
project life. An attempt is made here to summarize briefly the impact this had on the
circuits subsystem, along with the more detailed explanations of the final circuit designs.
All circuit schematic figures referred to in this section can be found in Appendix C,
unless specified otherwise.

3.2.1 Counting

 The contact switches used are simple single pole-double throw (SPDT) switches
which connect the common (C) terminal with the normally open (NO) terminal when the
switch is open and connect it with the normally closed (NC) terminal when the switch is
pressed. This setup made the RS latch debouncing circuit easily adaptable to this
situation. This circuit corresponds to Fig. 1. As the switches bounces towards and away
from one of the poles, the initial signal from the switch being triggered is held. A single

 20

RS latch 74LS279 chip provides four latches and therefore could be used for all three of
the switch debouncing circuits. Low Power Schottky logic chips are used exclusively
(aside from the 4050 buffers) in all the circuits for consistency and stability. Each
debouncing circuit is connected to a switch and to the PIC using detachable molex
connectors.

The number of viable options for the light sensor required as outlined in the previous
section is limited. The three main affordable options were using a photoresistor, a
phototransistor, or a photodiode. Of these, the phototransistor was chosen because of its
affordability and ability to provide a sharp change in voltage with small changes in
lighting through minimal adjustments. To detect the white balls, a phototransistor and a
superbright white LED are set up in a reflector configuration (see Fig. 5 in Appendix E).
Both the phototransistor and LED are covered on the sides to prevent unwanted effects
from stray lighting and the whole arrangement is encased in a long covered tunnel to
provide reliably dark conditions. The phototransistor is also covered with blue filter
paper for reasons mentioned previously. The two items are positioned on the side of the
tunnel such that when a ball crosses in front of them, the light from the LED reflects off
of the ball and onto the phototransistor. At all other times, the phototransistor receives no
light. The voltage drop across the transistor is greater when it receives no light and
smaller when there is light incident on it. The circuit, shown in Fig. 2, therefore has the
phototransistor in series with a resistor with the useful signal being the voltage drop
across the resistor. A 100kΩ trimmer potentiometer is used as the resistor so as to make
the signal adjustable as required for different lighting conditions. Increasing the
resistance increase the voltage of the signal. The signal is then fed into an op amp in
non-inverting amplifier configuration to make sure that the signal is at a suitable level to
trigger a high logic signal. Finally, the analogue signal is shaped into a digital signal by
the Schmitt trigger inverters. A pull-down resistor was necessary at the first inverter to
trigger the right logic levels. Using two inverters produces a positive square pulse when
white ping-pong balls rolls by the light sensor. This pulse is sent to the solenoid timing
circuit and also through a buffer to the PIC to be counted.

The last type of ball to be counted is the orange ping-pong ball. A few options were also
tested for this task. Among these were a discrete IR emitter-detector pair and a reflective
optosensor. It was thought that using IR sensors would eliminate the need to shield the
sensor from light. However, it was found that ambient visible light affected them too
much. Since it was apparent that this sensor would also have to be encased, the safe
option of using the same phototransistor and LED as for the white ball was employed.
Instead of detecting the reflection off of the balls, the two are positioned across from each
other so that when a ball rolls between them, the beam of light is broken and no light falls
on the phototransistor. The circuit (Fig. 2) is essentially the same, except that the
amplifier is not needed due to the large difference in voltage between the two signals.
The final signal needs only to be sent to the PIC.

 21

3.2.2 Actuators

 The loading bin mechanism was changed twice during the course of the project.
Originally, there was a rotating paddle powered by a DC motor. Later, this was scrapped
in favour of a gate that was allowed to open when two linear solenoids retracted.
However, the solenoid did not have a long enough stroke. Finally, a servo motor
replaced this setup. The servo motor uses pulse width modulation to determine the arm
position. A different square pulse width is needed for each of the two arm positions.
Therefore, two NE555 timer chips are fed into a multiplexer whose select pin is
controlled by the PIC output signal (see Fig. 3). Depending on whether the signal is high
or low, the multiplexer lets through the input from one timer or the other. The resistor
connected to +5V and the capacitor connected to pin 6 are the parameters that affect the
pulse with. The calculations to determine the approximate value needed are shown in
Appendix B. The precise values were found by testing, with the resistances being varied.
Although the motor was tested using a 90° rotation, the final circuit produced a 180°
rotation, with the resistances shaping the pulse widths so that the motor reached the end
of its turning range at each position.

Also controlled by the PIC output signal is the DC motor used for spacing the ping-pong
balls. The circuit (Fig. 4) is simple and merely allows current to flow through the motor
at 5 volts when the signal is high. This is accomplished using a TIP122 transistor chosen
for its high power tolerance.

The rotary solenoid presented a more substantial challenge in terms of supplying power
and control. The solenoid would not work on any less than 24 volts, so both the +12V/-
12V lines were needed. A combination of an NPN and a PNP transistor is needed since
each transistor alone cannot handle a negative voltage (Fig. 5). A clamping diode is
needed to prevent voltage spikes. Another challenge was in causing the solenoid to open
for a set amount of time (about one second) based on a short pulse from the white ball
light sensor circuit. The solution was to use a oneshot NE555 timer circuit (Fig. 6). The
pulse trigger the timer via a TIP112 transistor and the timer subsequently sends out a
pulse of length determined by the timing resistor and capacitor to the solenoid.

3.2.3 PIC Interface

 Keypad input is connected to the PIC through a circuit for the MM74C922N
keypad encoder chip. The circuit is shown in Fig.7. The keypad is connected by a ribbon
cable and the inputs A to D are connected to the appropriate pins on the PIC, also by
means of a ribbon cable. The pin assignments for the ribbon are given in Table 2 in
Appendix A. The output and inputs are connected to the PIC in the same way. Each
input and output has a 1kΩ resistor in series to limit the current sunk and sourced by the
PIC port. An NE555 timing circuit in astable mode (Fig. 8) provides a short pulse to one
of the PIC pins every second. The calculations for the pulse width and frequency are
similar to those for the servo circuit.

 22

3.2.4 Power Distribution

A surplus AT computer power supply provides all the circuits and actuators with
power. Two of the +5V/GND lines are connected to two sets of circuits to power the
logic components and the motors. These two sets of circuits are also connected to each
other to ensure a common ground is established among all the circuits. The PIC
development board requires a separate +12V/GND line and the rotary solenoid uses a
+12V/-12V line.

3.3 SUGGESTIONS FOR IMPROVEMENT

The actuators are the components that could use the most improvement. The
servo motor circuit did not work as well as it did on its breadboard prototype, but there
was insufficient time to remedy the situation. As the result, the motor control was
adequate, but the angle control could have been better. The DC gearhead motor circuit
also suffered from time restrictions. The circuit used is sufficient, especially considering
that the motor almost never runs for more than 30 seconds straight. However,
introducing pulse width modulation through a 555 timer would have allowed for speed
control.

There is also a minor problem with interference on the PIC. On occasion, the display
flickers after the operation is finished to show a different ball result even when the
keypad remains untouched. The most effective ways of minimizing this were the
addition of buffers on certain input lines and grounding unused pins in ports A and C.
However, this did not completely eliminate the problem. An improvement for the future
would be to find a way to fix the problem so that the display becomes stable.

 23

CHAPTER 4: PIC Microcontroller Subsystem

 24

4.1 ASSESSMENT OF THE PROBLEM

The ball sorter machine is expected to inform the user of the sorting statistics (the
total number of balls, number in each category and the overall operation time). The user
has to be able to communicate with the machine through a keypad to start the machine
and to review the sorting statistics. Also, the machine has to stop after all the balls are
sorted. Therefore the problems are: how to implement the timer that can display the
operation time, how to count number of balls, how to store the information so the user
can review the statistics after the balls are sorted and when and how to stop the operation.

4.2 SOLUTION

A device is needed that can be programmed to control the machine intelligently
and store the sorting statistics. For the complexity of the problem, a microcontroller
would be an ideal choice because we are targeting for a particular application and it is
cheap and consumes little power.

A PIC16F877A was used as the microcontroller with a 16×1 LCD display and a 4×4
keypad as the interface between the machine and the user. The keypad is connected to the
PIC through the MM74C922N keypad encoder. When the user presses the “start” button
on the keypad, the PIC will send a signal to the circuit to start the machine. Once the
“start” button is pressed, the timer begins. We build a timer circuit with a 555 timer that
sends signals to the PIC every second. The PIC then displays the number of signals
received on the LCD as the operation time. There are also counters such as switches that
send signals to the PIC when the balls trigger them. The PIC then stores the number of
signals received from each counter. Once the machine is stared, the PIC will wait for
signals from the counters for 15 seconds. If no signal is sent in 15 seconds, the PIC sends
a signal to the circuit to stop the operation and displays the “finish” message on the LCD.
On the other hand, every time the PIC receives a signal, it will reset the waiting time to 5
seconds. After the waiting time, PIC sends a signal to stop the operation and display
“finish” message on LCD. At this stage, the user has access to information (total number
of balls, number in each category and the overall operation time) stored in the PIC
through the keypad and the LCD.

1. 4.2.1 Timer:

The timer circuit is covered in detail in the circuit subsystem section.

2. 4.2.2 LCD connection:
The standard 16×1 LCD has a 14-pin interface: 8 data lines (D0 to D7), 3 control

lines (RS, W/R, E), and 3 power lines (VDD, VSS, VEE). VDD (pin 2) and VSS (pin 1) are
the module’s positive and negative power supply leads. VEE (pin 3) is the display
contrast control. A potentiometer placed between supply voltages, with its wiper
connected to VEE, allows for manual adjustment of the contrast of the display. D0 to
D7 (pin 7 to 14) are the data bus lines. The LCD is connected to the PIC through 4-bit

 25

data transfer mode. Therefore, only four data lines (D4 to D7) are used. The data is
sent to the PIC as two 4-bit numbers.
When RS (pin 4) is low, data types transferred to the display are interpreted as
commands such as clear display. When RS is set high, character data can be
transferred to the display. For this project, we only need to write to the display, so the
R/W is set low. In order to send data to the display successfully, the E (enable control
input) line is also needed. When writing to the display, data on the D4 to D7 lines is
transferred to the display when the enable input receives a high-to-low transition.
Therefore, one subroutine for writing commands and one subroutine for writing data
to the display are needed. For both subroutines, a short high-to-low transition for the
E line is given.

3. 4.2.3 Keypad connection:
The 4×4 keypad is connected to the PIC through an encoder. The MM74C922N

translates the pressed key on the keypad into a 4-bit binary number, which is then sent
to PORTA (RA0 to RA3) of the PIC. Based on the binary number received, the PIC
responds accordingly. The encoder assumes that the keys of the keypad are labeled
from 0 to 15 starting with 0 at the 1st row and 1st column and ending with 15 at the 4th
row and 4th column.

4. 4.2.4 PIC:
The program contains three main sections. The first part is to wait for the user to

press the start button to start the machine. After the machine starts, the program
moves on to the next section. In the second part, the PIC polls the timer circuit and all
the counters and stores the numbers of signals received from each counter and the
timer. If the PIC receives no signal from the counter for a period of time, the program
will exit this part, display “finish” on the LCD and moves to the last section. The last
section of the program is just a loop that waits for the 4-bit binary numbers from the
keypad encoder. According to the request from the user, the PIC sends the data to the
LCD to display the sorting statistics.

Pins Function Pins Function

RA0 RC4 White ping-pong
ball counter

RA1 RC5 Orange ping-pong
ball counter

RA2 RD2 RS line for the
LCD

RA3

Takes input from
the keypad through
the encoder.

 RD3 E line for the LCD

RC0

Receives signal
from the timer
circuit.

RD4

RC1 Tennis ball counter RD5
RC2 Golf ball counter RD6
RC3 Squash ball counter RD7

Data lines for the
LCD

 26

4.3 SUGGESTIONS FOR IMPROVEMENT

The program we have now can only hold information for one run. The machine
has to be reset for the next run and the information would be lost. One improvement that
can be made is to make the display hold a longer log (of the previous operations) with
more information. For example, after 3 runs, the user has access to the sorting statistics
for the 3 individual runs.

Also, once the emergency button is pressed, the machine stops, but all the information is
lost too. It could be re-designed so that even when the operation is interrupted, the PIC
will retain the information. This way, enables us to know how many balls have been
sorted and how long the machine had operated before it was stopped.

 27

CHAPTER 5
Integration, Improvement suggestions, Limitations, Conclusions, Results

 28

5.1 INTEGRATION

Integration proved to be a bigger challenge than initially thought. Throughout the stages
where all three subsystems were coming together, it was found that several major and
numerous minor changes had to be made to keep the machine accurate to design
specifications. These stages of integration, along with problems and solutions are
presented here.

1. 5.1.1 Circuit mounting on machine frame: Individual circuit boards were
screwed onto larger coroplast® corrugated plastic sheets, which were then fixed to
the metal frame of the machine. The plastic sheets were attached only to one side
of the machine to give it an organized look.

2. 5.1.2 Loading bin: Although it was initially proposed that a 6V D.C motor

would be used to operate the door of the loading bin, it was later found to be
ineffective because of frequent jamming of balls. This D.C motor was then
replaced by two linear 12V solenoids, each one placed on either side of a re-
designed loading bin. When powered, the solenoids would retract and let a flap be
freely opened by the balls. However, this idea, although better than the previous,
could not give 100% efficiency because the combination of solenoids did not have
enough force to retract against the weight of 20 assorted balls (estimated at
0.6kgs). Applying oil could not solve the problem because of point source
contact. A third solution, which worked beautifully, was to use a servomotor
(HS311 standard) to block the gate. When powered at 5.0 V, it had sufficient
torque (rated at 3.0 kg.cm) to move against the weight of the assorted balls.

3. 5.1.3 Contact switch placement: Contact switches had to be positioned with

is of counting when a ball rolled over
them. For tennis, golf and squash, the
proposed idea was to use switches with
a lever (longer lever for tennis, shorter
for golf and squash), which when
pressed, send a signal to the PIC to
register a count. There was the obvious
problem of balls not clicking the lever.
The solution implemented was to use
the same type of switches, but with
little rollers at the tip of the levers to
ensure better clicking contact.

Figure showing the old switches on the left and the new switch on the right of the arrow

great care because they provided the bas

 29

4. 5.1.4 Integration of colour sensor box: Two pairs of white LED and
phototransistor had to be placed inside the box. One pair was be used to detect
colour and activate the rotary solenoid, while the other pair was used to count
orange ping-pong balls. The whole box itself had to be positioned at an incline so
that the ping-pong balls going inside had the correct speed to be detected by the
sensors. A hole was cut on the bottom of the box to place the arm of the rotary
solenoid. A paper flap was attached to this arm. Different kinds of paper were
used to make the flap which would open for white ping-pong and remain closed
when an orange ping-pong was detected. Black construction paper was finally
agreed upon, with its edges strengthened with tape.

5. 5.1.5 PIC integration: The PIC development board, LCD display, and keypad

were mounted easily on a piece of corrugated plastic. Integration with the circuits
and the microcontroller was straightforward. The main tasks were to power the
PIC development board, connect the inputs and outputs to the proper pins, and
connect the keypad and LCD display to the PIC development board. A simple
DC plug was used to connect the development board to a +12V/GND line. A
double row header strip with a total of 34 pins that the main data bus can connect
to is soldered onto a circuit board. That way, the inputs and outputs can be
connected to that circuit using detachable molex connectors. Small series
resistors are located on each input and output line to limit the current reaching the
PIC, since there is a limit on the amount of current each port can sink or source.
Also, each input or output line leads to either a 4050 buffer or logic chip, adding
another line of protection for the PIC in case of a current surge. On the same
circuit board is another double row of pins for the keypad to hook up to using a
ribbon cable. The inputs from this are used in the keypad encoder circuit. The
LCD display is also connected to the development board using a ribbon cable.
The single row of pins on the LCD display had to be connected to a double row of
pins of the development board.

The main problems in integration of the PIC and circuits involved the input pins.
It was found that the counts for the balls was not always accurate, and that
sometimes one input signal would remain high for the entire time. This was
remedied by placing buffers on the white and orange ball signal lines to keep the
signals as close to ground voltage as possible when the signal was low. Another
major problem was erratic behaviour of the program, as identified by
unpredictable microcontroller program erasure and flickering of the display. It
was deduced that the LCD display connection was fine and that the problem was
with the PIC itself. The problem was also reduced by use of the buffers.
However, the flickering problem was still an issue. Power lines nearby were
twisted and placed away from the PIC circuit. Also, the unused pins in ports A
and C were grounded. This went a long way in reducing the flickering problem,
although it stills showed up every once in a while. This problem prevented the
use of the reset option originally planned for the microcontroller program since
unpredictable flickering sometimes resulted in premature reset of the program.

 30

Not only would eliminating the problem improve the post-operation display, it
would allow the reintroduction of the reset function.

6. 5.1.6 Ping-pong rate control: Numerous non-electrical ways were tried to
increase the separation of the ping-pong balls going into the colour sensor. These
ranged from putting more ramps before the colour sensors to making minute
adjustments to try and make ping-pong balls spin down from the ramps rather
than drop down. However, these methods only produced moderate success. A
solenoid was then decided upon. Controlling the solenoid activation at a specific
rate would allow one ball through at the specified rate. However, solenoids suited
for this job were sold out at Active Surplus. A final decision was taken: use a D.C
motor with gears to achieve the required speed. This idea was vaguely similar to
the feeding mechanism of the coin sorter from Assignment 1: Reverse
engineering.
Refer to appendix D, fig.4

7. 5.1.7 Debugging: Program code was modified slightly when the PIC was found
to stop too early, mid-way through sorting. The delay between last ball count and
program termination was increased from 4sec to 5sec. Moreover, if no balls were
put in and the program was started, the PIC would terminate after 15seconds. This
allowed termination in the unlikely event of mass jamming early on.

8. 5.1.8 Testing: When the machine was tested with 20 assorted balls, there were

numerous problems relating to jamming, flying balls and mis-sorting.
• To correct this, the first ramp was made slightly steeper and wider so that two

tennis balls rolling side by side did not jam. The space where all the smaller
(golf, squash, ping-pong) balls were collected after tennis had been sorted was
made larger. This allowed any fast-moving ping-pong ball to be collected
even when a tennis ball was pushing it.

• The ramp configuration leading to the collection of golf balls had to be
modified. A file was used to trim down the dowel height.

• Higher walls had to be put in place along the ramps to prevent balls flying.
• The colour sensor had to be calibrated several times to accommodate the

changes in the other parts of the machine.
• Various other trimming, filing and modifications were made to improve

accuracy of counting and sorting.

 31

5.2 SYSTEM IMPROVEMENT SUGGESTIONS
• Instead of the collecting ramp for squash, a slide would be better because

squash balls are sticky. On the first run during the competition, two squash
balls, already sorted, just had to drop into their collecting bins, but got stuck to
each other on the ramp.

• Incorporating a reset function on the keypad rather than using the reset button
on the PIC development board would make it more user-friendly.

• On an aesthetic note, different, eclectic materials were used for the same
reason, e.g., to make boundary walls to prevent balls from flying out. These
walls could be made of the same material to give a clean, uniform look to the
machine.

• More than 20 balls could easily sorted with 1 servomotor blocking the gate.
However, this can be extended to two servomotors, which would place less
stress on each individual servo, thereby prolonging the servo’s life. Moreover,
the existing design can be extended so that the loading bin is a two-stage
mechanism, whereby half the balls in the loading bin get sorted when the first
servo opens, and a few seconds later, when the second servo opens the rest of
the balls are released.

• Enclosing circuits so that they are not exposed.

• Using thicker construction paper for the colour sensors. On the second run
during the competition, the sorting was almost perfect, except that an orange
ping-pong got sorted into the white collecting bin. This was because of direct
sunlight shining on the colour sensor box, possibly messing up the calibration.

• Incorporating memory into the PIC so that information from one run can be
stored and referred to a short while later. I.e., a second run would not erase the
previous data.

 32

5.3 LIMITATIONS AND RESTRICTIONS IMPOSED BY CURRENT
METHODS

• While all other sorting stages of the machine are done in parallel, there is only
one colour sensor box. This causes ping-pong balls to be delayed as they wait
to be sorted one-by-one. Having another set of colour sensors could improve
this delay, but this makes the machine that much more expensive.

• The current method for counting tennis, golf and squash balls is by using
switches with a roller attached at the tip (see integration section). This
requires the ball to roll such that the switch is pressed as the ball goes over it.

• Solenoids drain too much power and could only be used sparingly on the
machine.

• The PIC can now only hold data from one run which is lost in case of power
failure. Moreover, when the emergency stop is pressed, all information is lost.

 33

5.4 CONCLUSIONS

The goal of this project was to build a working prototype of a machine that could sort
balls of different sizes and colours (tennis, golf, squash, orange and white ping-pong).
Within the proposed constraints of cost, power and weight, a first machine was designed
and partly constructed but it was found to be over the 10kg limit. Following this, a new
design that retained parts of the old design and incorporated newfound knowledge was
created. This new machine, at 7.3 kg, sorted two balls in parallel, compared with the one-
by-one sorting of the first machine. This cut down running time in half.

Utilizing the force of gravity to drive the balls minimized the number of moving parts.
This increased simplicity, reliability, ease of construction, and cost effectiveness. Sorting
the balls by size is the fastest and simplest method. However, since the ping-pong and
squash balls are the same size, this method was applied to sort out the tennis and golf
balls only. Because a squash ball is many times heavier than a ping-pong ball, they were
easily separated by weight using rubber bands. Finally, using a colour sensor separated
the white and orange ping-pong balls.

However, using gravity to drive the balls meant the user had no control over them. This
somewhat limited the sorting and caused occasional mis-sorting.

5.5 RESULTS

The machine sorts balls fast and is lightweight at 7.3 kg. Because of the parallel sorting
mechanism, the machine is able to sort 20 balls in well under 30 seconds. During the
competition, the first run was clocked at 20 seconds and the second run was 19 seconds,
which were relatively faster than other machines present there. The large capacity of the
loading bin allows more than 20 balls to be sorted, with that number higher if using
smaller balls only. The contact switches work perfectly with the circuits but a count may
be missed if the switch is pressed too quickly in succession. Even with a debouncer
circuit, this problem could not be solved. However, in typical runs, the distance between
balls is sufficiently great that they are properly registered.

 34

CHAPTER 6:
References, Bibliography. Tables and Appendices.

 35

6.1 REFERENCES

[1] J. Richard Hollrock, “Apparatus for washing and sorting plastic balls,” United

States Patent and Trademark Office. http://www.uspto.gov

[2] “Giant Sieve Sorter,” Exploratorium.
 http://www.exploratorium.edu/snacks/giant_sieve_sorter/

[3] John Weir, “Level 300 Design,” Engineering Design Melbourne.
 http://www.mame.mu.oz.au/eng_design/learning/level300.html

[4] M. Reza Emami, AER201Y Engineering Design Course Manual, 4th ed., Sep.

2003, p.5-49.

[5] M. Reza Emami, AER201Y Engineering Design Course Manual, 4th ed., Sep.

2003, p.5-60.

[6] M. Reza Emami, AER201Y Engineering Design Course Manual, 4th ed., Sep.

2003, p.5-51.

[7] R. Carter, “Re: Need 5V Driver Circuit for +12/-12V Solenoid.” Online Posting,

The Seattle Robotics Society. 1 July 2002
http://groups.yahoo.com/group/SeattleRobotics/message/11271

[8] R. Paisley, “LM555 and LM556 Timer Circuits.”

http://home.cogeco.ca/~rpaisley4/LM555.html

6.2 BIBLIOGRAPHY

Bill Davies, Practical Robotics, Richmond Hill: WERD Technology, 1997.

Listing of 7400 series logic chip datasheets. http://www.fe.up.pt/~victorm/TTL.htm

M. Reza Emami, AER201Y Engineering Design Course Manual, 4th ed., Sep. 2003.

Phillips Semiconductors product datasheets. http://www.philipslogic.com/products/

 36

6.3 Appendix A – Pin Descriptions

Circuit Connector Descriptions

Connections are split up into the actual physical circuit boards on which each connection
was located. All board-to-board connections were made using 2 or 3 pin small molex connectors
which were detachable. Pictures of circuit boards can be found in Appendix E.

PIC Circuit Board (see Fig. 6)

1) +5V/GND in from power supply
2) +5V/GND out to DC motor circuit
3) +5V/GND out to switch debouncer circuit
4) signal in from tennis ball debouncer (RC1)
5) signal in from golf ball debouncer (RC2)
6) signal in from squash ball debouncer (RC3)
7) signal in from white ping-pong ball counter(RC4)
8) signal in from orange ping-pong ball counter(RC5)
9) signal out to DC motor circuit (RC7)
10) ribbon cable connected to keypad
11) ribbon cable (data bus) connected to PIC development board

DC Motor Circuit Board (see Fig. 6)

1) +5V/GND in from PIC circuit
2) +5V/GND out to servo motor circuit
3) signal in from PIC circuit (RC7)
4) signal out to servo motor circuit
5) DC motor leads

Servo Motor Circuit Board (see Fig. 6)

1) +5V/GND in from DC motor circuit
2) signal in from DC motor circuit
3) +5V/GND and signal out to servo motor

Switch Debouncer Circuit Board (for tennis, golf, squash) (see Fig. 9)

1) +5V/GND in from white ping-pong ball signal circuit
2) +5V/GND out to PIC circuit

 A-1

3) C/NO/NC in from tennis ball switch
4) signal out to PIC circuit (RC1) for tennis ball counter
5) C/NO/NC in from golf ball switch
6) signal out to PIC circuit (RC2) for golf ball counter
7) C/NO/NC in from squash ball switch
8) signal out to PIC circuit (RC3) for squash ball counter

White Ping-pong ball Signal Circuit Board (includes rotary solenoid timing circuit, see Fig.
7)

1) +5V/GND in from power supply
2) +5V/GND out to phototransistor circuit
3) +5V/GND out to switch debouncer circuit
4) +5V/GND out to rotary solenoid circuit
5) signal in from phototransistor circuit
6) signal out to PIC (RC4) for white ball counter
7) signal out to rotary solenoid circuit

Phototransistor Circuit Board (include phototransistors and LEDs, see Fig. 7)

1) +5V/GND in from white ping-pong ball signal circuit
2) signal out to white ping-pong ball signal circuit
3) signal out to PIC (RC5) for orange ball counter
4) white ping-pong ball phototransistor leads
5) white ping-pong ball LED leads
6) orange ping-pong ball phototransistor leads
7) orange ping-pong ball LED leads

Rotary Solenoid Circuit Board (see Fig. 8)

1) +5V/GND in from white ping-pong ball signal circuit
2) +12V/-12V in from power supply
3) signal in from white ping-pong ball circuit
4) rotary solenoid leads

 A-2

PIC Connections

The PIC inputs and outputs were connected through a 34-pin data bus, with the locations

of each pin on the PIC circuit board shown below. Descriptions of each pin are also shown
below

 RC6 RC4 RC2 RC0 RA4 RA2 RA0
 RC7 RC5 RC3 RC1 RA5 RA3 RA1

Microcontroller Data Bus Pin Descriptions

Table 1

Pin Connection
RC0 PIC second timer
RC1 Tennis ball counter
RC2 Golf ball counter
RC3 Squash ball counter
RC4 White ping-pong ball counter
RC5 Orange ping-pong ball counter
RC6 Grounded
RC7 Signal out to DC and servo motor circuits
RA0 Data A on keypad encoder
RA1 Data B on keypad encoder
RA2 Data C on keypad encoder
RA3 Data D on keypad encoder
RA4 Grounded
RA5 Grounded
RD2 RS line for the LCD
RD3 E line for the LCD
RD4-RD7 Data lines for the LCD

 A-3

LCD Display Pin Descriptions

Table 2

Keypad Encoder Circuit and Pin Descriptions

Fig. 1

 A-4

PIC16F877 Tables

Table 3. Complete pin-out description. (cont’d on next page)

 A-5

 A-6

Table 4. Mnemonics for programming the PIC16F877

.

 A-7

6.4 Appendix B – Sample Calculations

Calculation for servo motor torque required

cmkgMLservoonactingTorque
cmLarmservoofLength
kgxMMass

orSafetyfact
kggmassTotal

.87.2
8.3,

754.03.158.0,
3.1

58.0580

==
=

==
=

==

To operate 20 Tennis balls, cmkgcmxkgxreqd .6.48.306.020 ==τ

Calculation for servo motor pulse width

Centre position requires a pulse width of 1.5ms (thigh) and 50Hz refresh rate. This works
out to a period of 20ms or less. Then, tlow<18.5ms.

According to formulas 1 and 2 given in the introduction:

thigh = 0.693CR1 = 1.5 x 10-3s R1 = 2.2kΩ
tlow = 0.693CR2 < 18.5 x 10-3s R2 < 26.7kΩ

R1 is connected to +5V and R2 is in parallel with the diode.

 B-1

6.5 Appendix C – Circuit Schematics

RS Latch

74LS279

1
2
3

5
6

10
12
11

14
15

4
7
9
13

1R
1S1
1S2

2R
2S

3R
3S1
3S2

4R
4S

1Q
2Q
3Q
4Q

+5V

signal out to PIC

R5

1k

x3 One each for tennis, golf, and squash

Tennis: signal out to RC1 on PIC
Golf: out to RC2
Squash: out to RC3

R4

1k

NC

NO

GND

C

1k

Fig. 1. Switch debouncer circuit, adapted from page 5-49 in the course notes4.

1 2

4050 Buffer

3 2

100K trimmer potentiometer

4050 Buffer

3 2

+5V

GND

orange ball signal out to RC5 on PIC

LM358 Op Amp (non-inverting amplifier configuration)

1

3

2

4
11

OUT

+

-

V+
V-

+5V

Superbright white LED

Orange Ping-pong Ball Phototransistor Circuit

x2 One each for white and orange ball sensors

GND

74LS14 Schmitt trigger inverter x2

1 2

1k

White Ping-pong Ball Phototransistor Circuit

GND

2.7k
100K trimmer potentiometer

LED circuits

white ball signal out to RC4 on PIC

CL138 phototransistor

74LS14 Schmitt trigger inverter

1 2

CL138 phototransistor

+5V

1k

signal out to solenoid timing circuit

Fig. 2. Colour sensing circuit. Op amp portion taken from page 5-60 in the course notes5.

 C-1

NE555 Timer

1

2
34

5
6
7

8
G

N
D

TRIGGER
OUTPUTRESET

CONTROL
THRESHOLD
DISCHARGE

VC
C

100 ohms

10nF

signal in from RC7 on PIC

100k

1000nF

100kIN4148

GND

2 to 1 Multiplexer

74LS157

4

7

9

12

2
3
5
6

11
10
14
13

15
1

1Y

2Y

3Y

4Y

1A
1B
2A
2B
3A
3B
4A
4B

STROBEG
SELECTAB

IN4148

+5V

1k

4050 Buffer

32

signal out to servo motor

NE555 Timer

1

2
34

5
6
7

8
G

N
D

TRIGGER
OUTPUTRESET

CONTROL
THRESHOLD
DISCHARGE

VC
C

1000nF

2.4k

10nF

+5V

Fig. 3. Servo motor driver circuit. NE555 timer circuit taken from page 5-51 in the course notes6.

DC Motor

1
2

1k

+5V

GND

4050 Buffer

3 2signal in from RC7 on PIC TIP122

Fig. 4. DC motor driver circuit

 C-2

TIP30

TIP122

7404 NOT gate

1 2

1

2

+12V

10k

24V rotary
solenoid

-12V+5V

S1
signal in from timing circuit

10k

IN4004

10k

Fig. 5. Rotary solenoid driver circuit. Adapted from Seattle Robotics message post7.

TIP112

100k

100k timing resistor

1000nF timing capacitor

GND

signal out to rotary solenoid

+5V

10nF

NE555 Timer

1

2
34

5
6
7

8
G

N
D

TRIGGER
OUTPUTRESET

CONTROL
THRESHOLD
DISCHARGE

VC
C

100nF

100k

signal in from white ball phototransistor circuit

Fig. 6. Rotary solenoid timing circuit. Adapted from “1Second Oneshot Monostable Oscillator”8.

 C-3

Fig. 7. Keypad encoder circuit. Taken from page 7-38 in the course notes9.

6.7k

GND

10nF

130k

+5V

NE555 Timer

1

2
34

5
6
7

8
G

N
D

TRIGGER
OUTPUTRESET

CONTROL
THRESHOLD
DISCHARGE

VC
C

0.01mF

to RC0 on PIC

4050 Buffer

3 2
IN4148

Fig. 8. PIC timing circuit. Similar to servo motor circuit.

 C-4

6.6 Appendix D – Machine Schematics

Fig. 1. Sketch of the entire machine.

 D-1

Fig. 2. The loading bin.

Fig. 3. The servo motor

 D-2

Fig. 4. The DC gearhead motor.

 D-3

6.7 Appendix E -- Photographs

Fig. 1. (left) The machine in its entirety.

Fig. 2. (right) The loading bin with servo motor-controlled gate.

Fig. 3. Elastic bands allow squash balls to drop while ping-pong balls pass over.

 E-1

Fig. 4. DC motor controls spacing between ping-pong balls.

Fig. 5. Colour sensing tunnel. White ball LED and phototransistor on the left, orange ball sensor on the
right, rotary solenoid flap in the middlle.

 E-2

Fig. 6. Upper cluster of circuits. Clockwise from left: PIC circuit, servo motor circuit, DC motor circuit.

Fig. 7. Lower cluster of circuits. Left: white ping-pong ball processing circuit. Right: Light detecting
circuit.

 E-3

Fig. 8. Rotary solenoid circuit.

Fig. 9. One third of the switch debouncer circuit.

 E-4

 E-5

6.8 Appendix F – Standard Operating Procedures

Tools and supplementary materials required: chip puller and replacement PIC16F877A

Warning: Please follow the exact operation procedure to prevent damage to machine

1. Plug in the power supply cord into a regular 110VAC 60Hz wall socket. Make
sure your hand is dry to prevent injury from electrical shock!

2. Turn on the master power switch connected to the power supply. At this point,
the servomotor, rotary solenoid and DC motor may move momentarily.

3. Before loading any balls:
• Ensure that the servomotor is blocking the gate with the shaft attached

to it in upright position.
• Ensure that the display on LCD reads: “Press D”. If instead, there

appear to be square blocks on the screen, proceed to step A below.
• Ensure that the collecting bins are placed in their correct positions, as

marked on the machine.
4. Put up to a maximum of 20 assorted balls of the following types: Tennis, Golf,

squash, white and orange ping-pong balls. Recommended squash ball type is
the blue-dot model.

5. Press ‘D’ only when steps 1-4 have been strictly observed. Pressing D starts
sorting.

6. Wait for the display to read ‘Finished’. Typical operation takes less than 30
seconds.

7. To get the count of each ball type, follow the legend provided below.
8. To run a second time, toggle either the Reset button shown on the diagram

below or the main power switch.
9. When not in use, store away from moisture.
10. If machine encounters other problems, call the toll-free number provided for

phone support.

Troubleshooting Instructions

A. If LCD screen displays blocks or nothing, turn off the power switch and unplug it
from the wall socket. Locate the PIC development board on the underside of the
keypad console. The diagram on the right shows what a PIC development board
looks like. Using the chip puller provided, gently pull the PIC free of its board.
Insert a new PIC that shipped with the product. Ensure correct position of PIC.
Pin #1 is marked.

C

PIC development board, with PIC on bottom right
PI
Legend:
D: Start Operation
1: Tennis count
2: Golf
3: Squash
4: White Ping-pong
5: Orange Ping-pong
6: Total ball count
8: Total running time
Reset
F-1

6.9 Appendix G – Microcontroller Algorithm and Code

Fig. 1. Flowchart illustrating the microcontroller algorithm.

wait for the start button on the
key pad to be pressed

if not start botton

if start button is pressed

polling the
input from the
timer circuit

+

increment the
timer variable

polling the
input from the

Tennis ball
counter

polling the
input from the

Golf ball
counter

polling the
input from the

Squash
counter

polling the
input from the
White ping-

pong counter

polling the
input from the
ORange ping-
pong counter

increment the
number of tennis

ball

increment the
number of golf

ball

increment the
number of squash

ball

increment the
number of white
ping-pong ball

increment the
number of orange

ping-pong ball

increment the total
number of ball

increment the total
number of ball

increment the total
number of ball

increment the total
number of ball

increment the total
number of ball

+ + + + +

- - - - - -

Check if the sorting is done.
(The PIC waits for signal for a

period of time, if no signal
then it's done)

Sorting is not
done

Polling the
keypad

Sorting is
done

Display the sorting
statistics

according to the
user's request

If one the assigned keys is
pressed

no key is pressed
or a non-assigned

key is pressed

 G-1

Fig. 2. The microcontroller assembly language code. Text in italics indicated programmer
comments.

list P=PIC16F877, F=INHX8M, C=160, N=80, ST=OFF, MM=OFF, R=DEC
include "P16F877.INC"
__config (_CP_OFF & _PWRTE_ON & _XT_OSC & _WDT_OFF & _BODEN_OFF)
errorlevel -302

;;;;;;;;;;;;;;;;;;;;;;;;;;;equates;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
#define timer PORTC,0
#define SW1 PORTC,1
#define SW2 PORTC,2
#define SW3 PORTC,3
#define SW4 PORTC,4
#define SW5 PORTC,5
#define SW6 PORTC,6

Bank0RAM equ H'20'
MaxCount equ 100
TenMsH equ 13
TenMsL equ 250

#define RS PORTD,2
#define E PORTD,3

com EQU 0x20 ; buffer for Instruction
dat EQU 0x21 ; buffer for data

;;;;;;;;;;;;;;;;;;;;;;;;;Variables;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 cblock Bank0RAM
 check_timer
 check_check_timer
 check1
 check_check1
 check2
 check_check2
 check3
 check_check3
 check4
 check_check4
 check5
 check_check5
 check6
 check_check6
 check_key1
 check_key2
 check_key3
 check_key4
 check_key5
 check_key6
 check_key7
 check_key8

 G-2

 temp
 temp1
 tempkey
 tempkey1
 tempSW

 counter_timer
 counter_timer2
 counter_timer3
 counter_timer4
 counter_timer5
 counter1
 counter12
 counter13
 counter2
 counter22
 counter23
 counter3
 counter32
 counter33
 counter4
 counter42
 counter43
 counter5
 counter52
 counter53
 counter6
 counter62
 counter63
 COUNTH
 COUNTL
 finish?
 endc

;;;;;;;;;;;;;;;;;;Vectors;;
 org H'000'
 goto Mainline
; org H'004'
; goto Stop

;;;;;;;;;;;;;;Mainline program;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;***

;;;;;;;;;;;;;;First Section;;

;This is the first loop that waits for the user to start the machine. ;Once
the user presses ”D” on the keypad, the program will go to the ;next loop to
start the counting and timing.

Mainline
 call Initial
 movlw "P"

 G-3

 call WR_DATA
 movlw "r"
 call WR_DATA
 movlw "e"
 call WR_DATA
 movlw "s"
 call WR_DATA
 movlw "s"
 call WR_DATA
 movlw " "
 call WR_DATA
 movlw "D"
 call WR_DATA

wait

;00001100 is the binary number the keypad send to the PIC through the
;encoder

 movf PORTA, W
 movwf tempkey
 andlw B'00001111'
 sublw B'00001100'
 btfsc STATUS, Z
 goto Start
 goto wait

;**

;;;;;;;;;;;;;;;Second Section;;;

;Display the initial setting of the timer Start
 call Initial
 bsf PORTC, 7
 movlw B'10000010'
 call WR_INS
 movlw "T"
 call WR_DATA
 movlw "i"
 call WR_DATA
 movlw "m"
 call WR_DATA
 movlw "e"
 call WR_DATA
 movlw ":"
 call WR_DATA

 movlw B'11000000'
 call WR_INS
 movlw "0"
 call WR_DATA
 movlw "0"
 call WR_DATA

 G-4

 movlw "0"
 call WR_DATA

 movlw B'11000100'
 call WR_INS
 movlw "s"
 call WR_DATA

; This is the main function of the program. It times the operation time ;and
counts the number of the balls in each category by counting the ;pins.

MainLoop

; We did the timer externally. We build a timer circuit with a 555 ;timer
circuit and it sends a signal to the pin every second.
 btfsc timer
 goto timer_on

; Since the signal from the pin stays high for many cycles, we need the
;“check” variable to avoid the program gets into the loop more than ;once and
thus counts more than once ;for one signal.

 bcf check_timer,0

; SW’s are the switches on the machine that send signal to the PIC ;whenever
they are ;pressed. The following SWon subroutines will then ;count the number
of signals sent. They also have the “check” variables ;to avoid counting more
than once for a single signal.

;All the switches and the timer circuit are connected to the pins in ;the
PORT C.

 clrw
 bcf STATUS, Z
 clrf tempSW
 movf PORTC, W
 movwf tempSW
 andlw B'00111110'
 sublw B'00000010'
 btfsc STATUS, Z
 goto SW1on
 bcf check1,0

 clrw
 bcf STATUS, Z
 movf tempSW, W
 andlw B'00111110'
 sublw B'00000100'
 btfsc STATUS, Z

 G-5

 goto SW2on
 bcf check2,0

 clrw
 bcf STATUS, Z
 movf tempSW, W
 andlw B'00111110'
 sublw B'00001000'
 btfsc STATUS, Z
 goto SW3on
 bcf check3,0

 clrw
 bcf STATUS, Z
 movf tempSW, W
 andlw B'00111110'
 sublw B'00010000'
 btfsc STATUS, Z
 goto SW4on
 bcf check4,0

 clrw
 bcf STATUS, Z
 movf tempSW, W
 andlw B'00111110'
 sublw B'00100000'
 btfsc STATUS, Z
 goto SW5on
 bcf check5,0

 goto MainLoop

;The following “on” subroutines are the actual functions that increment ;the
counter ;variables.

timer_on

 movf check_timer, W
 movwf temp1
 movlw B'00000010' ; Clear ram
 call WR_INS
 clrw
 movf temp1, W
 movwf check_timer
 btfsc check_timer,0
 goto returntimer
 bsf check_timer,0
 bsf check_check_timer,0
;Increment the timer variable. Also decrement of “finish?” variable. ;The
machine will operate for at least 15 seconds to wait for any ;switch to be
pressed. If nothing happens for 15 seconds, the program ;will finish counting
the timing and move to the next section.

 G-6

 movf check_timer, W
 movwf temp
 decfsz finish?, F
 goto move_on
 goto finish_sorting
move_on
 incfsz counter_timer, F
 decfsz counter_timer2, F ; check if move to the second digit
 goto one_digit_timer
 goto two_digit_timer

two_digit_timer
 movlw B'11000001'
 call WR_INS

 movlw 0
 movwf counter_timer
 movlw 10
 movwf counter_timer2
 incfsz counter_timer3

 decfsz counter_timer4, F
 goto return_from_3digit
 goto three_digit_timer

return_from_3digit

 movf counter_timer3, W
 addlw B'00110000'
 call WR_DATA

 goto one_digit_timer

three_digit_timer
 movlw B'11000000'
 call WR_INS

 movlw 0
 movwf counter_timer3
 movlw 10
 movwf counter_timer4

 incfsz counter_timer5
 movf counter_timer5, W
 addlw B'00110000'
 call WR_DATA

 goto return_from_3digit

one_digit_timer

 movlw B'11000010'
 call WR_INS
 movf counter_timer, W
 movwf temp1

 G-7

 movf temp, W
 movwf check_timer
 clrw
 movf counter_timer, W
 addlw B'00110000'
 call WR_DATA
 clrw
 movf temp1, W
 movwf counter_timer
 goto returntimer
SW1on

 movf check1, W
 movwf temp1
 clrw
 movf temp1, W
 movwf check1
 btfsc check1,0
 goto MainLoop

 bsf check1,0
 bsf check_check1, 0
 movf check1, W
 movwf temp

;As mentioned before, the program will wait for 15 seconds and then ;finish
the counting ;and timing. However, every time a switch is ;pressed, it will
reset the “finish?” variable and the machine will ;wait for 5 seconds from
the point the switch is pressed.
 movlw 5
 movwf finish?

 incfsz counter1, F
 decfsz counter12, F
 goto one_digit_1
 goto two_digit_1

two_digit_1

 movlw 0
 movwf counter1
 movlw 10
 movwf counter12
 incfsz counter13

one_digit_1
 movf counter1, W
 movwf temp1
 movf temp, W
 movwf check1
 clrw

 clrw
 movf temp1, W

 G-8

 movwf counter1
; We not only increment the counter for this switch, but also increment ;the
counter for the ;total number of balls.
 goto TotalBallCount

SW2on

 movf check2, W
 movwf temp1
 clrw
 movf temp1, W
 movwf check2
 btfsc check2,0
 goto MainLoop

 bsf check2,0
 bsf check_check2, 0
 movf check2, W
 movwf temp

 movlw 5
 movwf finish?

 incfsz counter2, F
 decfsz counter22, F
 goto one_digit_2
 goto two_digit_2

two_digit_2

 movlw 0
 movwf counter2
 movlw 10
 movwf counter22
 incfsz counter23

one_digit_2
 movf counter2, W
 movwf temp1
 movf temp, W
 movwf check2
 clrw
 clrw
 movf temp1, W
 movwf counter2

 goto TotalBallCount

SW3on

 movf check3, W
 movwf temp1
 clrw
 movf temp1, W
 movwf check3
 btfsc check3,0

 G-9

 goto MainLoop

 bsf check3,0
 bsf check_check3, 0
 movf check3, W
 movwf temp

 movlw 5
 movwf finish?

 incfsz counter3, F
 decfsz counter32, F
 goto one_digit_3
 goto two_digit_3

two_digit_3

 movlw 0
 movwf counter3
 movlw 10
 movwf counter32
 incfsz counter33
 bsf index3,0

one_digit_3
 movf index3, W
 addlw B'10000000
 call WR_INS
 movf counter3, W
 movwf temp1
 movf temp, W
 movwf check3
 clrw
 clrw
 movf temp1, W
 movwf counter3

 goto TotalBallCount

SW4on

 movf check4, W
 movwf temp1
 clrw
 movf temp1, W
 movwf check4
 btfsc check4,0
 goto MainLoop

 bsf check4,0
 bsf check_check4, 0
 movf check4, W
 movwf temp

 movlw 5
 movwf finish?

 G-10

 incfsz counter4, F
 decfsz counter42, F
 goto one_digit_4
 goto two_digit_4

two_digit_4

 movlw 0
 movwf counter4
 movlw 10
 movwf counter42
 incfsz counter43
 bsf index4,0

one_digit_4
 movf counter4, W
 movwf temp1
 movf temp, W
 movwf check4
 clrw
 clrw
 movf temp1, W
 movwf counter4

 goto TotalBallCount

SW5on

 movf check5, W
 movwf temp1
 clrw
 movf temp1, W
 movwf check5
 btfsc check5,0
 goto MainLoop

 bsf check5,0
 bsf check_check5, 0
 movf check5, W
 movwf temp

 movlw 5
 movwf finish?

 incfsz counter5, F
 decfsz counter52, F
 goto one_digit_5
 goto two_digit_5

two_digit_5

 movlw 0
 movwf counter5
 movlw 10
 movwf counter52
 incfsz counter53

 G-11

 bsf index5,0

one_digit_5
 movf counter5, W
 movwf temp1
 movf temp, W
 movwf check5
 clrw
 clrw
 movf temp1, W
 movwf counter5

 goto TotalBallCount

TotalBallCount

 incfsz counter6, F
 decfsz counter62, F
 goto one_digit_6
 goto two_digit_6

two_digit_6

 movlw 0
 movwf counter6
 movlw 10
 movwf counter62
 incfsz counter63

one_digit_6
 movf counter6, W
 movwf temp1
 movf temp, W
 movwf check6
 clrw
 movf temp1, W
 movwf counter6
 goto MainLoop

finish_sorting
 bcf PORTC, 7
 movlw "F"
 call WR_DATA
 movlw "i"
 call WR_DATA
 movlw "n"
 call WR_DATA
 movlw "i"
 call WR_DATA
 movlw "s"
 call WR_DATA
 movlw "h"
 call WR_DATA
 movlw ":"
 call WR_DATA

 goto display

 G-12

;;***

;;***

;;;;;;;;;;;;;;;;;;;;;Third Section;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;This section is just a loop that waits for the 4-bit binary numbers ;from
the keypad ;encoder. According the request from the user, the PIC ;sends the
data to the LCD to display to sorting statistics.

display
 clrw
 bcf STATUS, Z
 clrf tempkey
 movf PORTA, W

 movwf tempkey
 andlw B'00001111'
 sublw B'00000011'
 btfsc STATUS, Z
 goto ONE

 clrw
 bcf STATUS, Z
 movf tempkey, W
 andlw B'00001111'
 sublw B'00000010'
 btfsc STATUS, Z
 goto TWO

 clrw
 bcf STATUS, Z
 movf tempkey, W
 andlw B'00001111'
 sublw B'00000001'
 btfsc STATUS, Z
 goto THREE

 clrw
 bcf STATUS, Z
 movf tempkey, W
 andlw B'00001111'
 sublw B'00000111'
 btfsc STATUS, Z
 goto FOUR

 clrw
 bcf STATUS, Z
 movf tempkey, W
 andlw B'00001111'
 sublw B'00000110'
 btfsc STATUS, Z
 goto FIVE

 G-13

 clrw
 bcf STATUS, Z
 movf tempkey, W
 andlw B'00001111'
 sublw B'00001011'
 btfsc STATUS, Z
 goto SEVEN

 clrw
 bcf STATUS, Z
 movf tempkey, W
 andlw B'00001111'
 sublw B'00001010'
 btfsc STATUS, Z
 goto EIGHT

 goto display

ONE
 btfss check_key1, 0
 goto display

 bcf check_key1,0
 bsf check_key2,0
 bsf check_key3,0
 bsf check_key4,0
 bsf check_key5,0
 bsf check_key6,0
 bsf check_key7,0
 bsf check_key8,0

 movlw B'00000001' ; Clear ram
 call WR_INS

 movf counter13, W
 addlw B'00110000'
 call WR_DATA
 movf counter1, W
 addlw B'00110000'
 call WR_DATA

 movlw B'11000000'
 call WR_INS

 movlw "T"
 call WR_DATA
 movlw "e"
 call WR_DATA
 movlw "n"
 call WR_DATA
 movlw "n"
 call WR_DATA
 movlw "i"
 call WR_DATA
 movlw "s"
 call WR_DATA

 G-14

 goto display
TWO
 btfss check_key2, 0
 goto display

 bsf check_key1,0
 bcf check_key2,0
 bsf check_key3,0
 bsf check_key4,0
 bsf check_key5,0
 bsf check_key6,0
 bsf check_key7,0
 bsf check_key8,0

 movlw B'00000001' ; Clear ram
 call WR_INS

 movf counter23, W
 addlw B'00110000'
 call WR_DATA
 movf counter2, W
 addlw B'00110000'
 call WR_DATA

 movlw B'11000000'
 call WR_INS

 movlw "G"
 call WR_DATA
 movlw "o"
 call WR_DATA
 movlw "l"
 call WR_DATA
 movlw "f"
 call WR_DATA

 goto display
THREE
 btfss check_key3, 0
 goto display

 bsf check_key1,0
 bsf check_key2,0
 bcf check_key3,0
 bsf check_key4,0
 bsf check_key5,0
 bsf check_key6,0
 bsf check_key7,0
 bsf check_key8,0

 movlw B'00000001' ; Clear ram
 call WR_INS

 movf counter33, W
 addlw B'00110000'
 call WR_DATA
 movf counter3, W

 G-15

 addlw B'00110000'
 call WR_DATA

 movlw B'11000000'
 call WR_INS

 movlw "S"
 call WR_DATA
 movlw "q"
 call WR_DATA
 movlw "u"
 call WR_DATA
 movlw "a"
 call WR_DATA
 movlw "s"
 call WR_DATA
 movlw "h"
 call WR_DATA

 goto display

FOUR
 btfss check_key4, 0
 goto display

 bsf check_key1,0
 bsf check_key2,0
 bsf check_key3,0
 bcf check_key4,0
 bsf check_key5,0
 bsf check_key6,0
 bsf check_key7,0
 bsf check_key8,0

 movlw B'00000001' ; Clear ram
 call WR_INS

 movf counter43, W
 addlw B'00110000'
 call WR_DATA
 movf counter4, W
 addlw B'00110000'
 call WR_DATA

 movlw B'11000000'
 call WR_INS

 movlw "W"
 call WR_DATA
 movlw "h"
 call WR_DATA
 movlw "i"
 call WR_DATA
 movlw "t"
 call WR_DATA
 movlw "e"
 call WR_DATA

 G-16

 movlw "P"
 call WR_DATA
 movlw "-"
 call WR_DATA
 movlw "P"
 call WR_DATA

 goto display

FIVE
 btfss check_key5, 0
 goto display

 bsf check_key1,0
 bsf check_key2,0
 bsf check_key3,0
 bsf check_key4,0
 bcf check_key5,0
 bsf check_key6,0
 bsf check_key7,0
 bsf check_key8,0

 movlw B'00000001' ; Clear ram
 call WR_INS

 movf counter53, W
 addlw B'00110000'
 call WR_DATA
 movf counter5, W
 addlw B'00110000'
 call WR_DATA

 movlw B'11000000'
 call WR_INS

 movlw "O"
 call WR_DATA
 movlw "r"
 call WR_DATA
 movlw "a"
 call WR_DATA
 movlw "n"
 call WR_DATA
 movlw "g"
 call WR_DATA
 movlw "e"
 call WR_DATA
 movlw "P"
 call WR_DATA

 goto display

SEVEN
 btfss check_key6, 0
 goto display

 G-17

 bsf check_key1,0
 bsf check_key2,0
 bsf check_key3,0
 bsf check_key4,0
 bsf check_key5,0
 bcf check_key6,0
 bsf check_key7,0
 bsf check_key8,0

 movlw B'00000001' ; Clear ram
 call WR_INS

 movf counter63, W
 addlw B'00110000'
 call WR_DATA
 movf counter6, W
 addlw B'00110000'
 call WR_DATA

 movlw B'11000000'
 call WR_INS

 movlw "T"
 call WR_DATA
 movlw "o"
 call WR_DATA
 movlw "t"
 call WR_DATA
 movlw "a"
 call WR_DATA
 movlw "l"
 call WR_DATA
 goto display

EIGHT
 btfss check_key7, 0
 goto display

 bsf check_key1,0
 bsf check_key2,0
 bsf check_key3,0
 bsf check_key4,0
 bsf check_key5,0
 bsf check_key6,0
 bcf check_key7,0
 bsf check_key8,0

 movlw B'00000001' ; Clear ram
 call WR_INS

 movf counter_timer5, W
 addlw B'00110000'
 call WR_DATA
 movf counter_timer3, W
 addlw B'00110000'
 call WR_DATA
 movf counter_timer, W

 G-18

 addlw B'00110000'
 call WR_DATA
 movlw "s"
 call WR_DATA

 movlw B'11000000'
 call WR_INS

 movlw "T"
 call WR_DATA
 movlw "i"
 call WR_DATA
 movlw "m"
 call WR_DATA
 movlw "e"
 call WR_DATA

 goto display

;;***

;**
;;;;;;;;;;Initial subroutine;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;Initialize all the PORT settings and the variables

Initial
 call delay
 call delay
 bsf STATUS,RP0 ; select bank 1
 clrf TRISD ; All port D is output
 bcf STATUS,RP0 ; select bank 0

 movlw B'00110011' ;
 call WR_INS
 movlw B'00110010'
 call WR_INS
 movlw B'00101000' ; 4 bits, 2 lines,5X7 dot
 call WR_INS
 movlw B'00001100' ; display on/off, blinking cursor
 call WR_INS
 movlw B'00000110' ; Entry mode
 call WR_INS
 movlw B'00000001' ; Clear ram
 call WR_INS

 bsf STATUS,RP0
 movlw B'01111111'
 movwf TRISC
 bcf STATUS,RP0

 G-19

 bcf STATUS, RP0
 bcf STATUS, RP1
 clrf PORTA

 bsf STATUS, RP0
 movlw 0x06
 movwf ADCON1
 movlw 0xCF

 movwf TRISA
 bcf STATUS,RP0

 bcf PORTC, 7
 movlw B'00000000'
 movwf counter_timer
 movlw 0
 movwf check_timer
 movlw B'00000000'
 movwf index1
 movlw 10
 movwf counter_timer2
 movlw 0
 movwf counter_timer3
 movlw 10
 movwf counter_timer4
 movlw 0
 movwf counter_timer5

 movlw B'00000000'
 movwf counter1
 movlw B'00000000'
 movwf check1
 movlw B'00000000'
 movwf index1
 movlw 10
 movwf counter12
 movlw 0
 movwf counter13

 movlw B'00000000'
 movwf counter2
 movlw B'00000000'
 movwf check2
 movlw B'00000000'
 movwf index2
 movlw 10
 movwf counter22
 movlw 0
 movwf counter23

 movlw B'00000000'
 movwf counter3
 movlw B'00000000'
 movwf check3
 movlw B'00000000'
 movwf index3
 movlw 10

 G-20

 movwf counter32
 movlw 0
 movwf counter33

 movlw B'00000000'
 movwf counter4
 movlw B'00000000'
 movwf check4
 movlw B'00000000'
 movwf index3
 movlw 10
 movwf counter42
 movlw 0
 movwf counter43

 movlw B'00000000'
 movwf counter5
 movlw B'00000000'
 movwf check5
 movlw B'00000000'
 movwf index5
 movlw 10
 movwf counter52
 movlw 0
 movwf counter53

 movlw B'00000000'
 movwf counter6
 movlw B'00000000'
 movwf check6
 movlw B'00000000'
 movwf index3
 movlw 10
 movwf counter62
 movlw 0
 movwf counter63

 movlw 15
 movwf finish?

 movlw 1
 movwf check_check1
 movlw 1
 movwf check_check2
 movlw 1
 movwf check_check3
 movlw 1
 movwf check_check4
 movlw 1
 movwf check_check5
 movlw 1
 movwf check_check6
 movlw 1
 movwf check_check_timer

 bsf check_key1,0

 G-21

 bsf check_key2,0
 bsf check_key3,0
 bsf check_key4,0
 bsf check_key5,0
 bsf check_key6,0
 bsf check_key7,0
 bsf check_key8,0

 return

;**

;**
; Write command to LCD
; Input : W
; output : -
;**

WR_INS bcf RS ; clear RS
 movwf com ; W --> com
 andlw 0xF0 ; mask 4 bits MSB W = X0
 addlw 8
 movwf PORTD ; Send 4 bits MSB
 call delay
 bcf E ;
 call delay ; __ __
 bsf E ; |__|
 swapf com,w
 andlw 0xF0 ; 1111 0010
 addlw 8
 movwf PORTD ; send 4 bits LSB
 call delay
 bcf E ;
 call delay ; __ __
 bsf E ; |__|
 call delay
 clrw
 return

;***************************************
; Write data to LCD
; Input : W
; Output : -
;***************************************
WR_DATA bsf RS
 movwf dat
 movf dat,w
 andlw 0xF0
 addlw 0xC
 movwf PORTD
 call delay
 bcf E

 G-22

 call delay ; __ __
 bsf E ; |__|
 swapf dat,w
 andlw 0xF0
 addlw 0xC
 movwf PORTD
 call delay
 bcf E ;
 call delay ; __ __
 bsf E ; |__|
 clrw
 return

;***************************************
; Delay
;***************************************
delay
TenMs
 movlw TenMsH
 movwf COUNTH
 movlw TenMsL
 movwf COUNTL
Ten_1
 decfsz COUNTL,F
 goto Ten_1
 decfsz COUNTH,F
 goto Ten_1

 return

end

 G-23

6.10 Appendix H – Selected Datasheets

 H-1

 H-2

 H-3

 H-4

 H-5

 H-6

 H-7

 H-8

 H-9

 H-10

 H-11

 H-12

 H-13

 H-14

 H-15

 H-16

 H-17

