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Summary Image segmentation plays a crucial role in many medical imaging applica-
tions. In this paper, we present a novel algorithm for fuzzy segmentation of magnetic
resonance imaging (MRI) data. The algorithm is realized by modifying the objective
function in the conventional fuzzy C-means (FCM) algorithm using a kernel-induced
distance metric and a spatial penalty on the membership functions. Firstly, the original
Euclidean distance in the FCM is replaced by a kernel-induced distance, and thus the
corresponding algorithm is derived and called as the kernelized fuzzy C-means (KFCM)
algorithm, which is shown to be more robust than FCM. Then a spatial penalty is added
to the objective function in KFCM to compensate for the intensity inhomogeneities of
MR image and to allow the labeling of a pixel to be influenced by its neighbors in the
image. The penalty term acts as a regularizer and has a coefficient ranging from zero to
one. Experimental results on both synthetic and real MR images show that the proposed
algorithms have better performance when noise and other artifacts are present than
the standard algorithms.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With the increasing size and number of medical
images, the use of computers in facilitating their
processing and analyses has become necessary [1].
In particular, as a task of delineating anatomical
structures and other regions of interest, image
segmentation algorithms play a vital role in numer-
ous biomedical imaging applications such as the
quantification of tissue volumes, diagnosis, study
of anatomical structure, and computer-integrated
surgery [1—3]. Classically, image segmentation is
defined as the partitioning of an image into non-
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overlapping, constituent regions which are homo-
geneous with respect to some characteristics such
as intensity or texture.

Because of the advantages of magnetic reso-
nance imaging (MRI) over other diagnostic imaging
[2], the majority of researches in medical image
segmentation pertains to its use for MR images, and
there are a lot of methods available for MR image
segmentation [2—6]. Among them, fuzzy segmenta-
tion methods are of considerable benefits, because
they could retain much more information from the
original image than hard segmentation methods [3].
In particular, the fuzzy C-means (FCM) algorithm
[7], assign pixels to fuzzy clusters without labels.
Unlike the hard clustering methods which force
pixels to belong exclusively to one class, FCM allows
pixels to belong to multiple clusters with varying
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degrees of membership. Because of the additional
flexibility, FCM has been widely used in MR image
segmentation applications recently. However,
because of the spatial intensity inhomogeneity
induced by the radio-frequency coil in MR image,
conventional intensity-based FCM algorithm has
proven to be problematic, even when advanced
techniques such as non-parametric, multi-channel
methods are used [2]. To deal with the inhomo-
geneity problem, many algorithms have been pro-
posed by adding correction steps before segmenting
the image [4,5] or by modeling the image as the
product of the original image and a smooth varying
multiplier field [2,6]. Recently, many researchers
have incorporated spatial information into the ori-
ginal FCM algorithm to better segment the images
[6,8—10]. Tolias and Panas [8] proposed a fuzzy
rule-based system to impose spatial continuity on
FCM, and in another paper [9], they used a small
positive constant to modify the membership of the
center pixel in a 3 x 3 window. Pham et al. [6]
modified the objective function in the FCM algo-
rithm to include a multiplier field containing the
first- and second-order information of the image.
Similarly, Ahmed et al. [11] proposed an algorithm
to compensate for the intensity inhomogeneity and
to label a pixel by considering its immediate neigh-
borhood. A rather recent approach proposed by
Pham [12] is to penalize the FCM objective function
to constrain the behavior of the membership func-
tions, similar to methods used in the regularization
and Markov random field (MRF) theory.

On the other hand, there is a trend in recent
machine learning work to construct a nonlinear
version of a linear algorithm using the ‘kernel
method’, e.g. SVM [13—15], KPCA [16] and KFD
[17]. And this ‘kernel method’ has also been applied
to unsupervised clustering [18—20]. However, a
drawback of these kernel clustering algorithms
using the dual representation for clustering proto-
types (that is, each prototype is formulated as a
linear sum of after-mapped dataset elements, and
hence the parameters to be optimized are not
original prototypes anymore but linearly-combined
coefficients) is that the clustering prototypes lie in
high dimensional feature space and hence cluster-
ing results lack clear and intuitive descriptions as in
the original space. In this paper, a novel kernelized
fuzzy C-means (KFCM) algorithm is proposed to
compensate for such a lack and then applied to
the MR image segmentation. It is realized by repla-
cing the original Euclidean distance in the FCM
algorithm with a kernel-induced distance and add-
ing a novel spatial penalty also. The penalty term
acts as a regularizer and a coefficient associated
with the term is ranging from zero to one. It is shown

that the proposed algorithm has better segmenta-
tion results on simulated or real MR images cor-
rupted by noise and other artifacts than the
standard algorithms such as FCM.

The rest of this paper is organized as follows. In
Section 2, some basic concepts on the ‘kernel
method’ are briefly introduced. In Section 3, the
KFCM is derived from the original FCM based on the
‘kernel method’. The KFCM with spatial constraints
is presented in Section 4 to segment the MR images.
Some experimental comparisons are presented in
Section 5. Finally, Section 6 gives our conclusions
and several issues for future works.

2. The ‘kernel method’

In the last years, a number of powerful kernel-based
learning machines, e.g. Support Vector Machines
(SVM) [13—15], Kernel Fisher Discriminant (KFD)
[17] and Kernel Principal Component Analysis
(KPCA) [16] were proposed and have found success-
ful applications such as in pattern recognition and
function approximation. A common philosophy
behind these algorithms is based on the following
kernel (substitution) trick, that is, firstly with a
(implicit) nonlinear map, from the data space to
the mapped feature space, @ : X — F(x — ®&(x)), a
dataset {xy,...,x,} C X (an input data space with
low dimension) is mapped into a potentially much
higher dimensional feature space or inner product
F, which aims at turning the original nonlinear
problem in the input space into potentially a linear
one in rather high dimensional feature space so as to
faciliate problem solving as proved by Cover [21].

A kernel in the feature space can be represented
as a function K below:

K(x,y) = (2(x), 2(y)) (1)
where (&(x),d(y)) denotes the inner product
operation.

An interesting point about kernel function is that
the inner product can be implicitly computed in F,
without explicity using or even knowing the map-
ping @. So, kernels allow computing inner products
in spaces, where one could otherwise not practi-
cally perform any computations. Three commonly-
used kernel functions in literature are [22]:

(1) Gaussian radial basis function (GRBF) kernel

2
K(x,y) = exp <”o_2”> 2)
(2) Polynomial kernel
K(x,y) = (14 (x,y))’. (3)
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(3) Sigmoid kernel
K(x,y) = tanh(a(x,y) + ) (4)

where g, d, o, f are the adjustable parameters
of the above kernel functions. For the sigmoid
function, only a set of parameters satisfying the
Mercer theorem can be used to define a kernel
function.

3. Kernelized fuzzy C-means algorithm

The standard FCM objective function for partition-
. N . . .
ing a dataset {x«},_, into c clusters is given by

c N
Jm =Y uRlx—vill* (5)

i=1 k=1

where {v;};_, are the centers or prototypes of the
clusters and the array {uj}(=U) represents a parti-
tion matrix satisfying

C
Uc {uik €[0,1]]) "ux =1, vk and
i=1
N
0< > ui <N, Vi} (6)
k=1

The parameter mis a weighting exponent on each
fuzzy membership and determines the amount of
fuzziness of the resulting classification. In image
clustering, the most commonly used feature is the
gray-level value, or intensity of image pixel. Thus,
the FCM objective function is minimized when high
membership values are assigned to pixels whose
intensities are close to the centroid of its particular
class, and low membership values are assigned
when the point is far from the centroid.

From the discussion in Section 2, we know every
algorithm that only uses inner products can impli-
citly be executed in the feature space F. This trick
can also be used in clustering, as shown in support
vector clustering [18] and kernel (fuzzy) c-means
algorithms [19,20]. A common ground of these algo-
rithms is to represent the clustering center as a
linearly-combined sum of all &(xy), i.e. the cluster-
ing centers lie in feature space. In this section, we
construct a novel kernelized FCM algorithm with
objective function as follows:

c N
In =D uRll®(x) — d(vi)]? )
i=1 k=1
where @ is an implicit nonlinear map. Unlike
[19,20], @(v;) here is not expressed as a linearly-
combined sum of all @(xx) anymore, a so-called dual

representation, but still reviewed as an mapped
point (image) of v; in the original space, then with
the kernel substitution trick, we have

[B(xk) — BV)I[* = (@(x) — ()" ((xk) — B(1))
= &(xi) P(x) — D(vi) D(xk)
— ®(x) (Vi) + D(vi) D(v;)
= K(xx, Xk) + K(vi, vi) — 2K(xg, Vi)
(8)

Below we confine ourselves to the Gaussian RBF
kernel, so K(x,x) =1. From Egs. (7) and (8), can
be simplified to

c N
m=2>_ > up(1—K(x,vi) 9)

i=1 k=1

Formally, the above optimization problem comes in
the form

min Jn,

subjects to Eq.(6) (10)
U,{Vi}?:1

In a similar way to the standard FCM algorithm, the
objective function J,, can be minimized under the
constraint of U. Specifically, taking the first deri-
vatives of J,,, with respect to u;, and v;, and zeroing
them, respectively, two necessary but not sufficient
conditions for J,,, to be at its local extrema will be
obtained as follows:

(1= K(xe, vi)) VY
> i (1= K(x, vy)) Y

ke URK (X, Vi) Xk
=
>kt UK (X, Vi)

Here we use only the Gaussian RBF kernel for the
simplicity of derivation of Egs. (11) and (12) and
hence the algorithm in [23] is just a special case of
our algorithm. For other kernel functions, the cor-
responding equations are a little more complex,
because their derivatives are not as simple as the
Gaussian RBF kernel function.

The proposed kernelized fuzzy C-means algo-
rithm can be summarized in the following steps:

(11)

Uik

(12)

Step 1: Fix ¢, tmax, m>1 and ¢ > 0 for some
positive constant.

Step 2: Initialize the memberships uf,.

Step 3: For t =1,2,..., tmax, do:

(a) update all prototypes v} with Eq. (12);

(b) update all memberships uf, with Eq. (11);
(c) compute E' = max;i|ul, —ul'|, if Ef <eg,
stop;

end;
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According to Huber [24], a robust procedure
should have the following properties: (1) it should
have a reasonably good accuracy at the assumed
model; (2) small deviations from the model assump-
tions should impair the performance only by a small
amount; (3) larger deviations from the model
assumptions should not cause a catastrophe. It has
been shown that FCM is not a robust estimator from
the robust statistical point of view [25]. In the lit-
erature, there are many robust estimators [26,25]. In
Appendix A, we show that the above mentioned
KFCM using the kernelin Eq. (2) is a robust estimator.
Here we can give an intuitive explanation for the
robustness of KFCM. By Eq. (12), the data point x; is
endowed with an additional weight K(x, v;), which
measures the similarity between x, and v;. When x, is
an outlier, i.e. xy is far from the other data points,
K(xk, vi) will be very small, thus the weighted sum of
data points shall be suppressed and hence more
robust. Note that when ¢ in Eq. (2) tends to zero,
K (X, vi) turnsinto animpulse function with the value
of 1 only at x, = v; and 0 elsewhere. In this extreme
case, each given data point will have no longer
neighborhood but become a ‘‘soliton’’ and the dis-
tance between any two points in the feature space
approaches a common value of 1, leading to diffi-
culties in clustering them. On the other hand, when
sigma tends to infinity, the distance between any two
points in the feature space will approaches zero and
thus all data will cluster together, leading to a
difficulty in separating them. In short, we should
avoid such extreme cases in practice and choose
an appropriate value for sigma neither too large
nor too small by trial-and-error technique or experi-
ence or prior knowledge. In this paper, we choose the
sigma by the trial-and-error technique.

4, Spatially constrained KFCM for image
segmentation

Although KFCM can be directly applied to image
segmentation like FCM, it would be helpful to

Uik =

(1~ KOvi) + (25 (1~ ™ Ng))

Such regularization is helpful in segmenting images
corrupted by noise. The modified objective function
is given by

c N
Jm =) Y UR(T— K(xk, i)

i=1 k=1

c N
+N1RZZu;’;Z(1 — )™ (13)

i=1 k=1 reN

where N, stands for the set of neighbors that exist in
a window around x, (do not include x, itself) and Ng
is the cardinality of N,. The parameter « controls
the effect of the penalty term and lies between zero
and one inclusive. The relative importance of the
regularizing term is inversely proportional to the
signal-to-noise ratio (SNR) of the MRI data. Low SNR
would require a higher value of «, and vice versa.
The new penalty term is minimized when member-
ship value for a particular class of a pixel is large and
the membership values for that cluster should be
also large at neighboring pixels, and vice versa. In
other words, a pixel’s membership value is corre-
lated to those of the other pixels at its neighbor-
hood. It is interesting to note that Eq. (13) is
reminiscent of Rajesh Dave’s approach to robust
fuzzy C-means [25]. However, there are at least two
differences between Eq. (13) and Dave’s robust
fuzzy C-means (see Eq. (12) in [25]). Firstly, the
membership uj, in Eq. (13) is still constrained by
Eq. (6), while in Dave’s robust fuzzy C-means, there
are no constraints on the memberships other than
the requirement that they should be in [0, 1].
Another difference is that in Eq. (13) we emphasize
more the effect of the neighbors on the member-
ships of a pixel, while in Dave’s robust fuzzy C-
means no such neighbors exists.

An iterative algorithm for minimizing Eq. (13)
can be derived by evaluating the centroids and
membership functions that satisfy a zero gradient
condition like the KFCM. A necessary condition on
u;, for Eq. (13) to be at a local minimum or an saddle
point is

(14)

25:1 ((1 — K(x,vj)) + (O‘ZreNkm _ ujr>m/NR)>—1/(m—1)

consider some spatial constraints on the objective
function.

We propose a modification to Eq. (7) by intro-
ducing a penalty term containing spatial neighbor-
hood information. As mentioned before, this
penalty term acts as a regularizer and biases the
solution toward piecewise-homogeneous labeling.

Because the penalty function does not depend on
v;, the necessary conditions under which Eq. (13)
attains its minima is identical to that of KFCM, i.e.
Eq. (12). Alternating iterations between the two
necessary conditions will result in convergence of
the algorithm to the minima of Eq. (14), which is
almost identical to the KFCM, except in Step 3(b),
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using Eq. (14) instead of Eq. (11) to update the
memberships.

In the above discussion, we confine ourselves to
only Gaussian RBF kernel. In fact, in terms of Cha-
pelle et al. [27], we can also use more general RBF
kernels as below:

K(x,y) = exp(—pd(x,y)) (15)

d(x, y) can be chosen to be the following general
form

dix.y)=> |x* =y’ (0 < b <2) (16)

(d)

Figure 1

Obviously, the generalized RBF kernels satisfy
K(x,x) =1, and when they are used in Eq. (13),
the iterative equations are similar as Egs. (12) and
(14). Appendix B gives the detailed derivations of
the two necessary conditions (Egs. (12) and (14)) for
Eqg. (13) to be at a local minimum or a saddle point.

5. Results and discussions

In this section, we describe some experimental
results to compare the segmentation performance

(e)

Comparison of segmentation results on a synthetic image corrupted by 5% Gaussian noise. (a) The original

image, (b) using FCM, (c) using KFCM, (d) using SFCM, and (e) using SKFCM.
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of the following algorithms, i.e. FCM, FCM with
spatial constraints [12] (SFCM), KFCM, and KFCM
with spatial constraints (SKFCM). We test the four
methods on three different datasets. Oneis a simple
synthetic image, another is the classical simulated
brain database of McGill University [28], and the last
one is real MR slices. Only the Gaussian RBF kernel is
used for KFCM and SKFCM, and because of the large
dynamic range of the parameter value in SFCM, we
use the value recommended in [12].

The synthetic image is shown in Fig. 1a. It con-
tains a two-class pattern corrupted by 5% Gaussian
noise. The intensity values of the two classes are 0

and 90, respectively, and the image size is
64 x 64 pixels. Fig. 1b—e show the segmentation
results of FCM, KFCM, SFCM and SKFCM, respec-
tively. Here we set the parameter ¢ = 150 (Gaussian
RBF kernel width), « =07, m=2, Ny =8 (@3 x 3
window centered around each pixel, except the
central pixel itself). These values will be used in
the rest of this paper if no specific value is explicitly
stated. As shown in Fig. 1b and c, without spatial
constraints, neither FCM nor KFCM can separate the
two classes, while SFCM nearly and SKFCM comple-
tely succeed in correcting and classifying the data
as shown in Fig. 1d and e. Note that because of the

"

()

Figure 2 Comparison of segmentation results on a synthetic image corrupted by 5% Gaussian noise and sinusoidal
intensity inhomogeneity. (a) The original image, (b) using FCM, (c) using KFCM, (d) using SFCM, and (e) using SKFCM.
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injection of the kernel, KFCM need more execution
time than FCM, and correspondingly, SKFCM is
slower than SFCM. Typically, the algorithms without
kernel are several times faster than those with
injection of kernels.

Fig. 2a is the synthetic test image corrupted by
5% Gaussian noise and intensity inhomogeneity which
is simulated by a sinusoid function. Fig. 2b—e
show the results of FCM, KFCM, SFCM, and SKFCM,
respectively. As in Fig. 1, SKFCM acquires the best
segmentation performance. In order to obtain a
quantitative comparison, Table 1 gives the segmen-

Table 1 Segmentation accuracy (SA %) of four
methods on synthetic image

FCM KFCM SFCM SKFCM
Fig. 1a 96.02 96.51 99.34 100
Fig. 2a 94.41 91.11 98.41 99.88

tation accuracy (SA) of four methods in Figs. 1a and
2a, where the segmentation accuracy is defined as
the sum of the total number of pixels divided by the
sum of number of correctly classified pixels [11].

Figure 3 Comparison of segmentation results on a simulated brain MR image corrupted by 3% noise. (a) Original
T1-weighted image, (b) using FCM, (c) using KFCM, (d) using SFCM, and (e) using SKFCM.
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Figs. 3 and 4 present a comparison of segmenta-
tion results between FCM, KFCM, SFCM and SKFCM,
when applied on T1-weighted MR phantom [28].
The advantages for using digital phantoms rather
than real image data for validating segmentation
methods include prior knowledge of the true tissue
types and control over image parameters such as
modality, slice thickness, noise and intensity inho-
mogeneities. Here in our experiments, we use a
high-resolution T1-weighted phantom with slice
thickness of 1mm, 3% noise and no intensity inho-
mogeneities. Two slices in the axial plane with the
sequence of 91 and 121 are shown in Figs. 3a and
4a, respectively. The segmentation results on two

slices using the four methods with eight classes are
shown in Figs. 3b—e and 4b—e, respectively.
Table 2 gives the quantitative comparison scores
corresponding to Fig. 3a using four methods with
eight classes. Note that SFCM in fact finds three
classes, but because Class 5 is too small compared
with the other classes, its score is rounded to 0.00
in Table 2. The comparison scores (also named as
degree of equality in [29]) for each algorithm and
for each class are calculated by the following
equation [30]:

S — Aij N Arefj
VAU Arerj

(17)

Figure 4 Another simulated brain MR example. (a) Original T1-weighted image corrupted by 3% noise, (b) using FCM,

(c) using KFCM, (d) using SFCM, and (e) using SKFCM.
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Table 2 Comparison scores for Fig. 3a using four methods with eight classes

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8
FCM 0.46 0.75 0.51 0.39 0.47 0.35 0.65 0.17
KFCM 0.63 0.86 0.73 0.66 0.75 0.60 0.88 0.26
SFCM 0 0 0 0 0.00 0 0.59 0.31
SKFCM 0.66 0.86 0.72 0.72 0.69 0.47 0.88 0.29

where A;; represents the set of pixels belonging to
the jth class found by the ith algorithm and Aes;
represent the set of pixels belonging to the jth class
in the reference segmented image. Here we choose

o = 0.1, because the noise is relatively small. In this
case, FCM and SFCM cannot correctly classify the
images, while KFCM and SKFCM acquire satisfying
segmentation results.

(e)

Figure 5 Brain MRl example. (a) Original MR image corrupted by 5% Gaussian noise, (b) FCM result, (c) KFCM result,

(d) SFCM result, and (e) SKFCM result.



46

D.-Q. Zhang, S.-C. Chen

(d)

(e)

Figure 6 Another Brain MRI example. (a) Original MR image corrupted by 5% Gaussian noise, (b) FCM result, (c) KFCM

result, (d) SFCM result, and (e) SKFCM result.

Figs. 5 and 6 present a comparison of segmenta-
tion results among FCM, KFCM, SFCM and SKFCM
when applied on real MR slices corrupted by 5%
Gaussian noise. These T1-weighted MR images are
obtained using a General Electric Signa 1.5-Tesla
clinical MR imager with in-plane resolution of
0.94 mm? [11]. Figs. 5a and 6a show the artificially
corrupted images, and Figs. 5b—e and 6b—e are the
results using FCM, KFCM, SFCM, and SKFCM with
three classes, respectively. Table 3 gives the cor-
responding comparison scores for Figs. 5a and 6a
using four methods with three classes. From the

images and Table 3, we can see that without
spatial constraints, both FCM and KFCM are
affected by the noise badly, while SFCM partially
and SKFCM nearly completely eliminate the effect
of noise.

Finally, Fig. 7 shows a comparison of segmenta-
tion results of the four methods on a T2-weighted
MR image corrupted by slight intensity inhomogene-
ities. Fig. 7a is the original image, and Fig. 7b—e are
the results using FCM, KFCM, SFCM and SKFCM,
respectively. Note that SKFCM is much less frag-
mented than other algorithms and the incorporation
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Table 3 Comparison scores for Figs. 5a and 6a using four methods with three classes

Fig. 5a Fig. 6a

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
FCM 0.88 0.32 0.93 0.87 0.29 0.92
KFCM 0.79 0.19 0.91 0.79 0.17 0.91
SFCM 0.99 0.75 0.94 0.98 0.62 0.92
SKFCM 1.00 0.78 0.95 0.99 0.68 0.94

Figure 7 A T1-weighted Brain MRl example. (a) Original MR image corrupted by slight intensity inhomogeneities, (b)
FCM result, (c) KFCM result, (d) SFCM result, and (e) SKFCM result.
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of spatial constraints into the classification has
somewhat the disadvantage of blurring of some fine
details, but SKFCM had better result than SFCM, as
shown in Fig. 7d and e.

6. Conclusion

In this paper, a novel kernelized fuzzy C-means
algorithm is proposed and applied to MR image
segmentation. KFCM adopts a new kernel-induced
metric in the data space to replace the original
Euclidean norm metric in FCM and the clustered
prototypes still lie in the data space so that the
clustering results can directly be reformulated and
interpreted in the original space. It has been proved
that KFCM is a robust clustering approach in Appen-
dix A.

Furthermore, we added a spatial constraint on
the objective function of KFCM to effectively seg-
ment MR images corrupted by noise. Although the
spatial constraint used in KFCM is similar to that
used in [12], ours is simpler and computationally
inexpensive. What’s more, since the distance
induced by a Gaussian RBF is constrained between
zero and one, exactly consistent with the range of
the membership value; we only need to adjust the
regularizer coefficient between zero and one to
control the relative importance of the regularizing
term.

The results presented in this paper are prelimin-
ary and further clinical evaluation is required.
Because nearly all modified FCM algorithms for
image segmentation are based on adding some type
of penalty terms to the original FCM objective
function, the KFCM can be applied in a reasonably
straightforward manner to improve the perfor-
mance of these algorithms.
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Appendix A
Proof that KFCM using the kernel in Eq. (2) is a
robust estimator.

Proof. According to Huber [24], there are many
robust estimators, e.g. M-, L-, and R-estimator.

In this section, we are only interested in M-estima-
tor and follow the process of proof in [23]. Let
{X1,X2,...,Xn} be an observed dataset and 6 an
unknown parameter to be estimated. A M-estimator
for the location estimation can be generated by
minimizing the following objective function:

J(O0) = p(xi—0) (A1)
i=1

where p is a function and taken as 1 — K(x, 0) in this
proof and only dependent on (x; — ). Then the M-
estimator is generated by solving the equation

JO)=> ¢(xi—0)=0 (A.2)
i=1

where ¢(x—0) = (9/00)p(x —0). If we take
p(x —0) = (x—0)* and p(x — 0) = |x — 0|, respec-
tively, their M-estimators are the corresponding
mean and median of the sample dataset.Eq. (A.2)
can be solved by rewriting as

zn:w,-(x,- - (9) =0 (A.3)
i=1

where w; = ¢(x; — 0)/(x; — 0), called the weighted
function. This gives the estimator as below:

(A.4)

It is the weighted mean of the sample dataset. Note
the result by solving Eq. (A.4) may not be a closed
form for 0. We can apply the fixed-point iteration or
alternate optimization to obtain a solution of
Eq. (A.4) iteratively.

The influence function (IF) can help us to assess
the relative influence of individual observations
toward the value of an estimate. The M-estimator
has been shown that its influence is proportional to
its ¢ function [24]. Now we have IF of an M-esti-
mator with

Foy__ ¢x=0)
IF(x; F,0) = T 0) A0

where Fx(x) stands for a distribution function of X. If
an IF of an estimator is unbounded, an outlier might
cause trouble. There are many measures of robust-
ness derived from IF, one of which is the gross error
sensitivity (GES) defined below:

7" = sup|IF(x; F, 6)|
X

(A.5)

(A.6)

This quantity can interpret the worst approximate
influence that the addition of an infinitesimal point
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mass can have on the value of the associated esti-
mator. For our case, the resulting solutions from
Eq. (9) is an M-estimator if p(x —0) =1 — K(x,6)
and K(x, 0) is taken as Eq. (2). For simplicity, we only
consider Eq. (2) with single variable, i.e.

K(x,0) = exp <_(X67;H)2>

Thus we have

2
H(x— 0) = exp (ﬁ) (Z)x-0 @8

(A.7)

*

Uy =

where the kernel is define in Eq. (2), Nk the set of
neighbors that exist in a window around x, but do
not include xy itself, and Ny is the cardinality of N,.
Taking the derivative of L,, with respect to u; and
setting the result to zero, we have, for m > 1

olm
{ Uy mu;,

2

— ujr) ]—z} =0 (B.2)
reNk Uj=U;,

ik

! [(1 — K(xk, vi))

Solving for uj,, we have

. 1/(m—1)
A
(B.3)
m (1= Kxi ) + (45 e, (1 = i)™ /Mg ) )
Since Y5 qux =1, Vk
1/(m—1)
! — =1 (B.4)
5 \m (1= KO 19) + (50, (1= ) "/ ) )

By applying the L’Hospital’s rule, the following
limitations for Eq. (A.8) can be derived:

lim ¢(x—0)=0 (A.9)
X—+o0
And at the same time, we can get their bounded
maximum and minimum by zeroing the derivative of
the function in Eq. (A.8).

According to the above, the function in Eq. (A.8)
is bounded and continuous and thus the correspond-
ing IF is also bounded and continuous, resulting in a
finite gross error sensitivity. Hence our estimator
based on Eq. (2) is robust.

Appendix B

Derivations of Egs. (12) and (14).

Proof. The constraint optimization problem in
Eq. (10), where J,, is defined in Eq. (13), can be
solved by using the Lagrange multiplier method.
Now define new objective function as follows:

c N
L = ZZU,% — K(x¢, vi))

i=1 k=

+ N ZZU,kz (1 — uj)"+4 (1 - Zu,k>

i=1 k= reNg

(B.1)

Solving A from Eq. (B.4) and substituting into
Eq. (B.3), we can get the zero-gradient condition
for the membership as shown in Eq. (14).
Similarly, Substituting Eq. (2) into Eq. (B.1) and
zeroing the derivative of L,, with respect to v;, we
have

{ v, Zu,k K(x, vi))2(xx — vi)} =0

vi=v;

(B.5)

According to Eq. (B.5), Eq. (12) can be derived.
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