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Abstract—Accurate channel estimates are needed in orthogonal
frequency-division multiplexing (OFDM), and easily obtained
under the assumption of perfect phase and frequency synchro-
nization. However, the practical receiver encounters nonnegligible
phase noise (PHN) and carrier frequency offset (CFO), which
create substantial intercarrier interference that a conventional
OFDM channel estimator cannot account for. In this paper, we
introduce an optimal (maximum a posteriori) joint estimator for
the channel impulse response (CIR), CFO, and PHN, utilizing
prior statistical knowledge of PHN that can be obtained from
measurements or data sheets. In addition, in cases where a training
symbol consists of two identical halves in the time domain, we
propose a variant to Moose’s CFO estimation algorithm that opti-
mally removes the effect of PHN with lower complexity than with
a nonrepeating training symbol. To further reduce the complexity
of the proposed algorithms, simplified implementations based
on the conjugate gradient method are also introduced such that
the estimators studied in this paper can be realized efficiently
using the fast Fourier transform with only minor performance
degradation.

Index Terms—Carrier frequency offset, channel estimation,
conjugate gradient, orthogonal frequency-division multiplexing
(OFDM), phase noise.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing (OFDM)
is a well-known modulation technique [1] that has be-

come a preferred choice in high-rate wireless and wireline
communication systems such as broadband wireless access
(IEEE802.16), wireless local-area networks (Wi-Fi), high-speed
digital subscriber lines (DSLs), and digital broadcasting (DAB
and DVB). This is due to its spectral efficiency—no guard
bands are needed between adjacent frequency channels—and
more importantly, its implementation simplicity compared to
traditional time-domain modulation methods in channels with
severe intersymbol interference (ISI), encountered whenever
bit rates are required to be very large.

OFDM does have its drawbacks relative to time-domain
modulation, most significantly its extreme sensitivity to time-
varying multiplicative effects such as fast fading, Doppler
shifts, and oscillator jitter. The latter two effects lead to a
mismatch between the carrier frequencies of the received signal
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and the local oscillator, so that a frequency offset is cre-
ated. Oscillator jitter also creates a very damaging effect called
phase noise, meaning that the phase of the locally generated
sinusoid randomly changes over time.

While the detrimental effects of frequency offset and phase
noise have been well documented [2]–[8], successful alleviation
of these combined problems based on a statistically optimal re-
ceiver implementation, which must include channel estimation
in the presence of carrier frequency offset (CFO) and phase noise
(PHN), has not been proposed. In [9] and [10], PHN suppression
methods were proposed for frequency-selective channels but the
channel frequency response was assumed to be known prior to
PHN suppression. In [11], PHN was considered in the formula-
tion of the channel estimation problem but was not directly used
in the solution and thus the method is not statistically optimal.
In [12], channel estimation was performed but first the PHN was
estimated using at least one “carrier recovery” pilot tone that re-
quired frequency guard bands on both sides to minimize interfer-
ence from data symbols. Only specific frequency-selective chan-
nels were considered in the simulations, so the performance in
more general Rayleigh frequency-selective channels is unknown
but it is expected that performance will degrade if a channel null
should occur in the vicinity of the pilot tone. In [13], PHN was
estimated using pilot symbols based on a linearized parametric
model, but it is suboptimal because the intercarrier interference
(ICI) introduced by the PHN in the received signal is ignored.
In [14], a precoding method was proposed that used null guard
bands in the frequency domain. The method is designed for ban-
dlimited multiplicative effects but was also tested on the Wiener
phase noise model with some success. However, it requires ex-
pensive operations such as singular value decomposition and
null guard bands, which reduce spectral efficiency.

In this paper, our goal is to tackle the channel estimation
problem when CFO and PHN are present through the maximiza-
tion of a “complete likelihood function.”1 Special features of the
complete likelihood function are taken advantage of that enable
a unique and elegant joint estimation scheme achieving statisti-
cally optimal performance.

The rest of this paper will be organized as follows. Section II
discusses the power spectral density (PSD) of the voltage-con-
trolled oscillator (VCO) output in connection with the prior dis-
tribution of the PHN process and presents the signal model of a
CFO/PHN channel. Section III derives the joint CFO/PHN/CIR
estimator (JCPCE), which performs accurate channel estima-
tion even with CFO and PHN impairment. Section IV considers

1The complete likelihood function is the joint distribution of the observed
variables (e.g., r) and latent variables (e.g., �, ���, g) in the probabilistic model
[15, ch. 11].
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Fig. 1. OFDM packet structure.

a special case when repeating training symbols are available
and introduces a variant to Moose’s CFO estimation algorithm
which optimally rejects the effect of PHN. The channel im-
pulse response (CIR) is subsequently estimated by optimally
cancelling the remaining PHN. Section V contains simulations
of the proposed algorithms and tests their robustness in a wide
range of scenarios. Section VI contains the conclusions.

Notation: Upper and lower case boldface letters indicate ma-
trices and column vectors; , , and denote conjuga-
tion, transpose, and Hermitian transpose, respectively; and
represent the all-one and all-zero column vector, respectively;
diag is a diagonal matrix with the vector on its diagonal;

and denote the real and imaginary part of a vector or
matrix; and stand for the expected value and variance
of a random variable; and represent, respec-
tively, real and circularly symmetric complex Gaussian random
vectors with mean and covariance matrix . In particular,
for an -dimensional circularly symmetric complex Gaussian
random vector,

(1)

II. SYSTEM DESCRIPTION

A. Prior Statistics of Phase Noise

Two different models of PHN are available in the literature
[2]. The first one models a free-running oscillator and assumes
the PHN process to be a Wiener process that is nonstationary and
whose power grows with time. The second one models an oscil-
lator controlled by a phase-locked loop (PLL) and approximates
the PHN process as a zero-mean colored Gaussian process that
is wide-sense stationary and has finite power. For simplicity, we
will refer to the first one as Wiener PHN and the second one as
Gaussian PHN, even though both assume Gaussian statistics.
In this paper, we focus on Gaussian PHN, but the generaliza-
tion to Wiener PHN is straightforward [16], [17] (by simply ad-
justing the PHN covariance matrix ) and is omitted here for
conciseness.

Denoting the phase noise process at the output of the
phase-locked VCO by , the samples of , i.e., ,
within the th OFDM symbol , has a multivariate Gaussian
prior distribution: , where the samples are
taken at a rate of samples per second, where is the
number of OFDM subcarriers and is the period of the OFDM
symbol. For this model to be useful, however, the covariance
matrix must be available. Conveniently, instead of measuring

through time averaging, we may calculate it according to the
specifications of the phase-locked VCO as follows.

We first write the output of the VCO with PHN as

(2)

Then the autocorrelation function of , , can be
calculated

(3)

where the approximation is tight when (since
). This is a common assumption made about

PHN processes [12]. The third equality is obtained from the
characteristic function of , which is Gaussian. It
follows after taking the Fourier transform that the PSD of
is

(4)

where . The shape of may be mea-
sured by a spectrum analyzer or provided as part of the VCO
specifications (phase-noise masks are commonly known) and
hence can be found.

The autocorrelation function of the PHN process can
be obtained from the inverse Fourier transform of . Since
the PHN process has zero mean, this is also its autocovariance
function. Finally, the value on the th row and th column of
is extracted from

(5)

since is the sampling period. The methods presented in
this paper assume knowledge of , but the sensitivity to in-
exact knowledge (bandwidth and power of the PHN) is exam-
ined through simulations in Section V-A4.

B. Signal Model

We consider a slow fading frequency-selective channel where
the CIR is assumed to remain constant during each packet of
transmission, which consists of multiple OFDM symbols in-
cluding the initial preambles for synchronization and channel
estimation as well as the variable-length payload that follows
(as depicted in Fig. 1).



3544 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 9, SEPTEMBER 2006

Fig. 2. OFDM transmitter/receiver structure and phase noise channel model. The channel is estimated using the proposed JCPCE.

Assuming perfect timing synchronization, the complex base-
band received signal of an OFDM symbol within the training
period sampled at rate can be written as

(6)

where is the normalized CFO; is the dis-
crete-time PHN sequence; is the channel frequency
response at subcarriers 0 to 1; are the transmitted
data symbols belonging to an -QAM constellation; and

is complex white Gaussian noise with variance
per dimension. Equation (6) may be written in matrix form as

(7)

where is the DFT matrix with the th
element being ;

is the data vector;
is the noise vector with distribution ;

diag is the PHN matrix;
diag is the CFO

matrix; and diag diag is the
channel matrix. Notice that although a full OFDM symbol
contains time samples, with being the length of the
cyclic prefix, in this signal model we assume the cyclic prefix
has been removed and so there are only samples per OFDM
symbol. We may rewrite (7) as

(8)

where is defined as and is a circulant ma-
trix. Using to denote the CIR, where
is the channel length, the CIR can be converted to the channel
frequency response by writing . Note that

is the true CIR, but for simplicity, we shall also as-
sign the name to . is a partition of the DFT matrix, i.e.,

, in which and
are orthogonal unitary matrices satisfying and

.
Let diag . We can now introduce the following

equivalent representation of (7) for the convenience of channel
estimation:

(9)

C. Role of Channel Estimation in Receiver Design

The transmitter/receiver structure and the channel model over
a period of one OFDM symbol, taking into account the distor-
tion caused by CFO and PHN, are illustrated in Fig. 2. In many
OFDM standards, such as IEEE 802.11a and HiperLAN2, there
are mainly two types of physical layer symbols: the preamble
symbols and the payload symbols. Issues such as automatic
gain control, frequency offset correction, and timing synchro-
nization are resolved by the earlier portion of preamble sym-
bols, while fine frequency tuning and channel estimation are
performed by the later portion of preamble symbols. Timing
synchronization is commonly performed using autocorrelation
based metrics [18], [19], which are insensitive to CFO and PHN
disturbances. At the receiver, when the preamble symbols used
for channel estimation are received, it is assumed that perfect
timing synchronization is achieved and the vector is exactly
known. On the other hand, when the payload is received, it can
be assumed that the channel is known (except for possible fine
tuning using the embedded pilot symbols) and the data symbols
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are to be detected. A diagram exemplifying this packet structure
is given in Fig. 1.

From (9), in the absence of the CFO term and PHN term ,
it is easy to obtain the optimal estimate of given the training
symbols and the received signal in the channel estimation
phase. In the data detection phase, we assume perfect knowl-
edge of and simply extract the maximum likelihood estimate
of . Unfortunately, this simple procedure is not possible in a
CFO/PHN channel, as the presence of and first renders the
channel estimate inaccurate and later (through a different PHN
sequence) impairs the performance of data detection.

This paper will focus on obtaining accurate channel and
CFO estimates in the presence of PHN. Our design method-
ology goes as follows: we will start by introducing an optimal
joint CFO/PHN/CIR estimator. Then, we seek means to de-
crease the complexity of the optimal estimator by transmitting
repeating training symbols and also by using the conjugate
gradient method. We will not be dealing with the data detection
problem in this paper, because with the accurate estimate of the
channel and CFO (which are quasi-static), the data detection
stage only suffers from the unknown PHN distortion (which
is time-varying). Interested readers are referred to [20] for
detailed analysis of the challenging data detection problem in
the presence of PHN.

III. CHANNEL ESTIMATION WITH CFO AND PHN

A. Joint CFO/PHN/CIR Estimator (JCPCE)

An OFDM channel estimator may either estimate the channel
frequency response or the CIR . In this paper, we shall
assume that we are always interested in the CIR , since its low
dimensionality leads to welcome computational savings as well
as lower variance for the obtained estimates. Furthermore, we
assume that the tap length of the impulse response (or, equiva-
lently, the dimension of ) is known a priori. Looking at (9), it
is obvious that the optimal estimates for , , and are coupled
and in general difficult to obtain. But as the following derivation
shows, we are very fortunate in this case, as the joint optimiza-
tion problem can in fact be decoupled.

First, we write the “complete likelihood function”
, which is propor-

tional to the a posteriori distribution . and
are constants (representing noninformative priors) as no prior
knowledge of and is assumed. Also, we have assumed in
Section II-A that the prior distribution of is , where

is known. The “complete negative log-likehood function”
can therefore be written as

(10)

Our objective is to find the optimal estimates

(11)

1) Forward Substitution: Solving pro-
duces the optimal channel estimate in terms of and

(12)

Note that when , this is the expression for the con-
ventional maximum likelihood channel estimator with no PHN
and CFO. It shall be assumed hereafter that constant-modulus
training symbols are used, i.e., . This assumption
is reasonable for a practical channel estimator, and it simpli-
fies the expressions in subsequent derivations.2 This assumption
leads to

(13)

Noticing that

(14)

and substituting (14) into (10), we have after simplification

(15)

where diag and . Realizing
that for small , , and letting

(16)

2The extension to non-constant-modulus training symbols simply requires the
use of (12) instead of (13) in the subsequent steps.
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TABLE I
JOINT CFO/PHN/CIR ESTIMATOR (JCPCE)

Note that the last equality holds for real valued . Solving
gives us the optimal estimate of in terms

of

(17)

Substituting (17) into (16) and simplifying, we have, after
scaling by a constant

(18)

Hence by searching over a range of feasible values of , we
may find the optimal estimate of

(19)

In the absence of PHN, i.e., with in (9),
would be the metric for CFO estimation in the

joint estimator for and .
2) Backward Substitution: After finding and correspond-

ingly , the values of can be determined by substituting
into (17)

(20)
Letting diag and plugging it into (13), the

optimal channel estimate after removing the CFO and PHN is
therefore

(21)

We summarize the complete JCPCE algorithm in Table I.
Note that finding closed-form expressions for the jointly op-

timal estimates for , , and is due to the unitary property
of CFO and PHN matrices: and . This
property is also utilized in [21] to establish the optimality of
MUSIC-based CFO estimation in OFDM.

B. Complexity Analysis and Low Complexity Implementation

In the OFDM system, computational complexity is a crit-
ical issue. A receiver design with good performance but high

complexity would conflict with the original motivation of using
OFDM, which implies a low complexity order of
with the use of FFT. In the implementation of the JCPCE, the
main computational tasks rest in evaluating (18), (20), and (21).
We will now investigate the complexity of each computation and
seek means to reduce complexity.

In (21), we see that , , and are diagonal matrices,
while and are FFT or partial FFT matrices. Thus each
step of matrix-vector multiplication has a complexity order of

or less.
The more challenging task is the evaluation of (20), which

involves a matrix inversion requiring in general a complexity
order of . However, as we will demonstrate in the fol-
lowing, with the help of the conjugate gradient (CG) method
[22], we are able to lower the complexity to an acceptable level.

First we let and ,
where can be computed efficiently using FFT since all ma-
trices involved in calculating are either diagonal or FFT (or
partial FFT) matrices. In order to proceed, we notice that , as
a Toeplitz matrix, can be approximated by a circulant matrix
[23], [24] according to this simple result.

Theorem 1: The best circulant approximation to a symmetric
Toeplitz matrix , , in the sense of min-
imizing the Frobenius norm , is a circulant matrix

whose first row has entries

(22)

where is the first row of . This opera-
tion has complexity of .

Proof: See [24].
It can be shown that this approximation is asymptotically

exact as for an autocorrelation matrix of a first-
order autoregressive process, which is a good fit to the PHN
process assumed in [25]. Being a circulant matrix, the eigen-
value decomposition of is and ,
where is a diagonal matrix. It is well known that
diag , where is the first column of . Replacing

by , the modified estimator for becomes

(23)

which is equivalent to solving a linear equation
. This problem can be

easily tackled by the conjugate gradient method. The complete
algorithm is presented in Table II.

Of all the operations in Table II, the dominant com-
plexity is associated with the matrix-vector multiplication

. Thanks to the circulant structure of

, this can be performed using FFT because .

More specifically, evaluating re-
quires 7 6 operations. Thus, the overall complexity
of every iteration of the CG algorithm is . The
CG algorithm requires a maximum of iterations to converge
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TABLE II
CONJUGATE GRADIENT ALGORITHM FOR EVALUATING (23)

to the exact solution. Yet for this particular problem, because
the PHN process can be sufficiently characterized by very few
signal dimensions, we only require a very small number of
iterations for an accurate estimate, as will be apparent in the
simulations. In conclusion, the complexity of evaluating (20) is

, where is the number of iterations in the CG al-
gorithm. The practical value of is investigated by simulations
in Section V-A3 and is found to be about five to ten.

The computation of (18) can be done almost identically as
(20) using the circulant approximation of and the CG algo-
rithm. However, a crucial drawback of the search method for
finding the optimal is that the complexity scales with the in-
verse of the resolution required for . Certainly, this problem is
offset by the fact that CFO synchronization needs only be done
once when the link between the transmitter and receiver is es-
tablished, but it is still advantageous if further simplifications
can be made.

IV. CFO ESTIMATION BASED ON REPEATED

TRAINING SYMBOLS

For cases where the system has very limited computational
power, it is beneficial to obtain a closed-form solution for .
When no PHN is present, the pioneering work of Moose [26]
achieves just that by assuming that the two halves of a training
symbol are identical.

A. Moose’s CFO Estimator

In the Moose algorithm [26], we transmit an OFDM symbol
with two identical halves in the time domain. Such a signal
is easily generated [19] by transmitting training symbols

on the even subcarriers and zeros on the odd
subcarriers. The -point sequence in time at the receiver, with
CFO and PHN distortion, can be written as

(24)

for .
We shall first assume no PHN, i.e., for

. Denoting and
, we have

(25)

where and
is the training symbol that is transmitted twice consecutively,

and are independent
additive noise vectors. Here the CFO matrix , channel circular
convolution matrix , and DFT matrix follow similar defini-
tions as before but are only half the size.

The optimal estimate of is

(26)

which reduces to if we assume that
(this is an approximation since and are in

general not independent).
Notice that

(27)

where because the instantaneous value
of depends on but the statistics does not. We then have

. Therefore, the negative log-
likelihood function becomes

(28)

And it follows that

(29)

where denotes the phase angle of a complex number .

B. CFO Estimator With PHN Rejection

In the presence of PHN, the derivation presented above fails
because (27) no longer holds. We propose, in the following, a
CFO estimation algorithm that optimally accounts for PHN.

Rewriting (25) to include the PHN distortion, we have

(30)

where and contain consequtive PHN sequences and
. The optimal estimate of is then

(31)

where

(32)

Assuming as before, it follows that

(33)
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Denoting the “differential PHN” sequence
and diag , can

be written in terms of as

(34)

where . In other words,
. This

means that is only a function of instead
of and individually. We may therefore rewrite (33) as

(35)

Lemma 1: If is a jointly Gaussian random
vector with distribution , where can be
partitioned into four 2 2 blocks

(36)

then .
Proof: See Appendix I.

Denoting , we may write
. Finally, we use the following lemma to evaluate
in (35).

Lemma 2: Given
and , then

(37)

where diag .
Proof: See Appendix II.

From (35) and Lemma 2, we see that

(38)

This expression is very similar to (29) except for a weighting
matrix that accounts for the distortion caused by PHN. [Note
that (38) represents a novel CFO estimation scheme in the PHN
channel.]

C. Joint PHN and CIR Estimation

With the CFO estimated using (38), we now turn to the re-
maining channel estimation issue in the presence of PHN. Be-
cause of the special structure of the repeating training symbol,
we are required to rederive the optimal joint PHN/CIR estima-
tion algorithm.

Expressing (24) in the matrix form yields

(39)

where is the time-domain received
repeating training symbol; is the CFO matrix al-
ready estimated; is the unknown PHN matrix;

is the cascade of two DFT matrices;
diag contains the length- training

symbol; and is the channel impulse response.
Similar to (10), we obtain the “complete negative log-likeli-

hood function”

(40)

Solving produces the optimal channel
estimate of in terms of

(41)

Noticing that

(42)

and substituting (42) into (40), we have after simplification

(43)

where

(44)

and diag , . Solving
gives us, similar to (17), the optimal esti-

mate of

(45)

We summarize the modified JCPCE algorithm for the case of
repeating training symbols in Table III.
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TABLE III
MODIFIED JCPCE WITH CLOSED-FORM CFO ESTIMATION

D. Complexity Analysis and Low Complexity Implementation

The derivation in the previous section shows that, with the
help of repeating training symbols, the CFO estimation can be
done in closed form with the distortion due to PHN optimally re-
jected. However, the final expression in (38) still requires a ma-
trix inversion. Fortunately, complexity reduction is also avail-
able for this computation since is a Toeplitz matrix with a
close circulant approximation . We may concentrate on the
matrix vector product

(46)

This is equivalent to solving a linear equation
, which can be computed efficiently using the CG

method analogous to the one described in Table II.

V. SIMULATIONS

In this section, we simulate the performance of JCPCE and
its variants based on algorithms presented in Tables I–III. The
following system parameters are assumed in our simulations un-
less stated otherwise:

1) a Rayleigh multipath fading channel with a delay of
taps and an exponentially decreasing power delay pro-

file that has a decay constant of four taps;
2) an OFDM training symbol size of subcarriers with

each subcarrier modulated in quadrature phase-shift keying
(QPSK) format;

3) baseband sampling rate MHz (subcarrier spacing
of 312.5 kHz);

4) a phase-locked VCO at the receiver with PHN standard de-
viation of degrees (i.e., ).

The channel is normalized such that . The random
PHN is generated, according to the Matlab code recommended
for the IEEE 802.11g standard [25], as independent identically
distributed Gaussian samples passed through a single-pole But-
terworth filter of 3 dB bandwidth kHz. Hence, the
PHN covariance matrix is

(47)

A. Channel Estimation With PHN Only

In general, PHN is a more complex effect than CFO and is
harder to analyze. We will first perform simulations with no
CFO to study the joint PHN and CIR estimation described as

Fig. 3. Effect of residual common phase rotation in JCPCE, SNR = 30 dB.

part of the JCPCE algorithm (Steps 3–5 in Table I with ),
as well as its low-complexity variant summarized in Table II.

1) Unresolvable Residual Common Phase Rotation: Fig. 3
plots an instance of the PHN process and its estimate via the
JCPCE algorithm. The figure also depicts the peculiar effect of
residual common phase rotation at the output of the JCPCE. At
SNR dB, it can be seen that the PHN profile can be esti-
mated accurately but differs from the actual PHN by a constant
phase rotation that shifts the estimate towards the zero degree
line. This constant rotation creates an equal but opposite rota-
tion in the channel estimate (which is difficult to see graphi-
cally). The exact analysis of this residual common phase rota-
tion (RCPR) is difficult, but we have a fairly good understanding
of its origin, which is summarized in the following proposition
and is backed up by further simulations.

Proposition 1: Assume the actual PHN process and channel
impulse response are and , respectively. As SNR ,
the jointly optimal estimates and , calculated using the
JCPCE algorithm approach

(48)

(49)

where

(50)

Proof: See Appendix III.
A simple justification to this proposition is provided in Ap-

pendix III. In brief, the RCPR, represented by an unknown con-
stant , is introduced to shift the optimal estimate such that

is closer to a zero-mean Gaussian process defined by
the covariance matrix . Thus although the PHN estimate we
have obtained is “maximum a posteriori,” it is not unbiased.

This proposition not only gives us a qualitative understanding
of the phenomenon but also offers quantitative predictions. By
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Fig. 4. The predicted pdf versus the histogram of � at SNR = 15; 25;35 dB.

making most likely, is approximately zero mean.
That implies that should be approximately the negative sample
mean of

(51)

Since , it is easy to see that
.

Fig. 4 shows the probability density function (pdf) of the mea-
sured compared to the Gaussian prediction, where is mea-
sured in simulation as the mean difference between and .
It is seen that this prediction holds very well at different SNRs.
Hence, we now have much better knowledge about the behavior
of RCPR and know that it is not significant, as its variance is a
fraction of that of PHN.

We call this RCPR “unresolvable” because it cannot be cor-
rected in the channel estimation stage using a likelihood-based
estimator. The consequence of RCPR is the rotation of the esti-
mated channel impulse response from by . Left untreated,
using this biased channel estimate in the data detection stage in a
PHN channel is equivalent to having a perfect channel estimate
but an exacerbated PHN. In fact, the equivalent PHN process
would be zero-mean Gaussian with a new covariance matrix

(52)

where . Our joint PHN/data detection algo-
rithm [20] will then use as the PHN covariance matrix at the
data detection stage.

Alternatively, can also be estimated in the data detection
stage using pilot symbols embedded in the transmitted OFDM
symbols. Since this is not the subject of this paper, we will not
discuss it much further but assume from hereon that can be
perfectly corrected to facilitate easy assessment of the quality
of channel estimation. In particular, in each simulation, is set
to be the mean difference between the actual PHN process and
the estimated PHN process.

Fig. 5. MSE versus SNR channel estimation performance (� = 0).

2) Channel Estimation Performance: The channel estima-
tion performance of JCPCE is shown in Fig. 5, where the mean
squared error (MSE) of estimating is plotted against the
system SNR SNR . The performance of
the proposed channel estimator is compared to the Cramér–Rao
lower bound (CRLB) for an OFDM channel without PHN dis-
tortion. As calculated in Appendix IV, the CRLB for estimating
the impulse response is

CRLB (53)

It is surprising to see that with the proposed JCPCE, the
channel estimate is almost as good as the optimal performance
with no PHN. This implies that our channel estimator almost
completely cancels the effect of PHN distortion. The channel
estimation performance as a result of using with the circulant
approximation (Section III-B) is also plotted, and it is seen that
the approximation has very little effect on the performance of
the channel estimator. On the other hand, the performance of
the conventional channel estimator (which ignores the random
PHN but removes the common phase noise) is much poorer than
the proposed JCPCE, especially at high SNR. An error floor
exists because the ICI created by the PHN causes a constant
SNR degradation to the channel estimator.

3) Effect of Number of Iterations of CG Algorithm: The
number of iterations in the conjugate gradient method for PHN
estimation is a crucial factor in the overall complexity of the
low-complexity implementation of JCPCE. Fig. 6 illustrates
the performance of the channel estimator at SNR
dB as a function of the number of CG iterations in Table II.
The plots reveal that, in general, reliable channel estimates
can be obtained with five to ten CG iterations. This is due to
the superior convergence properties of the conjugate gradient
method.

4) Sensitivity to PHN Modelling Error: It is well known that
the accuracy of the prior statistics plays an important role in the
performance of Bayesian estimators. The Bayesian estimation
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Fig. 6. Channel estimation performance for different number of CG iterations
(� = 0).

Fig. 7. MSE versus SNR channel estimation performance with PHN modelling
error (� = 0).

of the PHN in the JCPCE algorithm is therefore influenced by
the accuracy of the prior distribution and, more specifically,
the covariance matrix . From (47), it is seen that modelling er-
rors may occur in two places: the PHN standard deviation
and the relative bandwidth . In our simulations, the
PHN is generated by setting and . We
artificially introduce erroneous PHN statistics in the channel es-
timator by varying in Table I over a range of values of and

to test the robustness of JCPCE to inaccurate PHN statistics.
Fig. 7 depicts the performance of JCPCE. The result demon-
strates that even with significant errors in PHN statistics, JCPCE
performs close to the CRLB.

5) Performance at Different Levels of PHN: Fig. 8 studies
the channel estimation accuracy as a function of the severity of
PHN distortion. We vary the parameters of the PHN generated in
the simulations over different settings of and and assume
perfect knowledge of these statistics at the channel estimator (no
modelling error). It is seen that even in extreme cases such as

Fig. 8. MSE versus SNR channel estimation performance at different levels of
PHN (� = 0).

and , JCPCE is able to perform close to
the CRLB, confirming that the proposed algorithm is robust to
very severe PHN in the channel.

B. Channel Estimation With Both CFO and PHN

In this section, we will examine the channel estimation per-
formance in the presence of both CFO and PHN. The allowable
CFO estimation range is for the JCPCE algorithm
and for the modified JCPCE algorithm. In the following
simulations, the CFO term will be generated from a uniform
distribution in [ 0.4, 0.4] corresponding to a maximum CFO of
125 kHz. The PHN generator will use the setting
and . Care should be taken, however, when simulating
both CFO and PHN. Now the effective PHN seen by the PHN
estimator (Step 2 in both Table I and Table III) is a combina-
tion of the residual CFO estimation error (as an additional PHN
process with linearly varying phase) and the actual PHN. So
should now be equal to the mean difference between the effec-
tive PHN process and the estimated PHN process and removed
before channel estimation.

1) Channel Estimation Performance of JCPCE: Fig. 9 plots
the channel estimation MSE as a function of the system SNR in
the presence of both CFO and PHN. The complete JCPCE algo-
rithm is compared to the partial JCPCE where PHN estimation
is omitted. (We cannot compare with the conventional channel
estimator that ignores PHN and CFO because it completely fails
when .) It is seen that the complete JCPCE algorithm al-
most completely cancels the effect of both CFO and PHN dis-
tortion. The partial JCPCE, which optimally cancels CFO but
ignores PHN, deviates from the CRLB, demonstrating that PHN
has a major effect in channel estimation even with optimal CFO
estimation.

2) Channel Estimation Performance of Modified JCPCE:
Fig. 10 simulates the modified JCPCE (Table III) given re-
peating training symbols. Here we keep the same simulation
settings except for letting the training symbol have a repeating
structure. The performance of the modified JCPCE is compared
against the CRLB and the conventional channel estimator with
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Fig. 9. MSE versus SNR channel estimation performance using JCPCE algo-
rithm (� 2 [�0:4; 0:4]).

Fig. 10. MSE versus SNR channel estimation performance using modified
JCPCE algorithm (� 2 [�0:4;0:4]).

the CFO estimated using Moose’s method in (29) and the
random PHN ignored. It is seen that the conventional method
suffers from an error floor due to the untreated PHN. The
modified JCPCE in Fig. 10 has very similar performance to the
original JCPCE in Fig. 9, showing that the modified JCPCE,
while having much lower complexity, does not perform worse.
Therefore, in practice, the modified JCPCE is a preferred
scheme over the regular JCPCE.

VI. CONCLUSIONS

The problem of channel estimation in a practical OFDM re-
ceiver that suffers from phase noise and frequency offset has not
been adequately addressed to date. In this paper, we first derived
the maximum a posteriori estimator of the channel response,
phase noise, and frequency offset, incorporating prior knowl-
edge of the phase noise statistics and using a constant-modulus
training sequence. Next, we proposed a less complex estimator,

which requires a training symbol that has two identical halves
in the time domain. The lower complexity is obtained because
an expensive exhaustive search over all feasible frequency off-
sets is no longer needed. The proposed method’s CFO estimate
is more accurate than the one from [26] since it is based on an
accurate model of the PHN present in the signal.

Furthermore, we explored ways to reduce the complexity of
the proposed estimators through the use of the conjugate gra-
dient iteration. It is demonstrated that the channel estimators
are able to perform well with a very small number of CG iter-
ations, with each iteration efficiently computed using the FFT.
It is evident that the proposed channel estimators can be readily
implemented without substantial increase to the overall com-
plexity of conventional OFDM receivers. This paper provides a
firm foundation for the design of OFDM detectors in the pres-
ence of PHN [20], where the CIR and CFO can now be safely
assumed known. The multiple-user (orthogonal frequency-di-
vision multiple-access) extension of this paper can be readily
carried out through the expectation–maximization (EM) frame-
work introduced in [27] and is currently being studied.

APPENDIX I
PROOF OF LEMMA 1

From

(54)

and

(55)

we obtain

(56)

APPENDIX II
PROOF OF LEMMA 2

Using the iterated expectation theorem [15, ch. 14] and its
analog in covariance, given a Gaussian distributed and a
Gaussian conditional distribution for , the marginal distri-
bution of is also Gaussian and is related to the conditional
distribution by

(57)

Applied to the conditional distribution , we
have

(58)
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Also we have

(59)

Therefore, after simple matrix algebra, we obtain

(60)

We then readily arrive at our final result

(61)

APPENDIX III
PROOF OF PROPOSITION 1

Consider the minimization of the complete negative log-like-
lihood function , where the actual values of the variables
are and . We examine the joint optimizers of as
SNR in relation to and .

Looking at (10), it is seen that has two components,
associated with and , respectively. Denote

(62a)

(62b)

As SNR (i.e., )

(63)

but the minimizer is not unique, since

(64)

for arbitrary angle . This is because introducing two opposite
phase rotations to and does not alter the overall channel
response, and hence the likelihood.

Assume the uniqueness of (64), i.e.,
describes a complete set of optimizers for
. Notice that any variable pair

makes , or . It then fol-
lows that the optimizer of must be a subset of

, as any other pair would make the complete
likelihood finite. Consequently, the only task remaining is to
find subject to .

APPENDIX IV
CRLB FOR OFDM CHANNEL ESTIMATION

In the absence of CFO and PHN, the received signal in an
OFDM channel can be written, similar to (9), as

(65)

Thus

(66)

or equivalently

(67)

Taking the derivative with respect to , we have

(68)

From [28], the Fisher information matrix can be evaluated

(69)

where the last equality follows from the constant modulus as-
sumption of the training data, i.e., . Specifi-
cally in this simulation, QPSK training symbols are used, i.e.,

.
The CRLB is therefore

CRLB

SNR
(70)

where SNR .
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