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1 Introduction

The aim of this project is to implement a classification algorithm to recognize handwritten digits (O-
9). It has been shown in pattern recognition that no single classifier performs the best for all pattern
classification problems consistently. Hence, the scope of the project also included the elementary study
the different classifiers and combination methods, and evaluate the caveats around their performance
in this particular problem of handwritten digit recognition. This report presents our implementation of
the Principal Component Analysis (PCA) combined with 1-Nearest Neighbor to recognize the numeral
digits, and discusses the other different classification patterns. We were able to achieve an accuracy rate
of 78.4%.

2 Background and Motivation

Hand writing recognition of characters has been around since the 1980s.The task of handwritten
digit recognition, using a classifier, has great importance and use such as — online handwriting
recognition on computer tablets, recognize zip codes on mail for postal mail sorting, processing bank
check amounts, numeric entries in forms filled up by hand (for example - tax forms) and so on. There are
different challenges faced while attempting to solve this problem. The handwritten digits are not always
of the same size, thickness, or orientation and position relative to the margins. Our goal was to
implement a pattern classification method to recognize the handwritten digits provided in the MINIST
data set of images of hand written digits (0-9). The data set used for our application is composed of 300
training images and 300 testing images, and is a subset of the MNIST data set [1] (originally composed of
60,000 training images and 10,000 testing images). Each image is a 28 x 28 grayscale (0-255) labeled
representation of an individual digit.

The general problem we predicted we would face in this digit classification problem was the
similarity between the digits like 1 and 7, 5 and 6, 3 and 8, 9 and 8 etc. Also people write the same digit
in many different ways - the digit ‘1’ is written as ‘“1’, ‘/, ‘7 or ‘1’. Similarly 7 may be written as 7 7, or 7.
Finally the uniqueness and variety in the handwriting of different individuals also influences the
formation and appearance of the digits.

3 System Overview

Our approach to solve this problem of handwritten numeral recognition can be broadly divided into
three blocks:

i) Pre-Processing/Digitization
ii) Feature Extraction using PCA
iii) Classification using 1-Nearest Neighbor algorithm
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The block diagram for the system is shown below (Fig. 2):
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Fig.1. System Diagram of the implemented pattern classifier

4 Pre-Processing

During our initial review of the various classifier methods, we undertook the approach of

processing the training set images to reduce the data by thresholding the given image to a binary image.

Fig.2 represents the sample images taken from the MNIST database [1].
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Fig. 2 Sample digits used for training the classifier
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We also looked at various processing methods such as edge-detection, and thinning of the digit
image [2] to get a skeleton of the digit. This approach of acquiring the skeleton of the digit is widely used
in the classifiers which mainly reply upon a well-defined input image for their accuracy. PCA is the

holistic approach that extracts eigendigits based on the overall information contained in the image. So,
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the information such as grayscale values and thickness of the digits actually assist in providing more
information. Therefore, extensive pre-processing was not required in the implementation of the system.
The training set was segmented into 10 groups — one for each digit, and then each group was
individually passed into the PCA algorithm for the extraction of eigendigits.

5 Feature Extraction using Principal Component Analysis

Principal component analysis (PCA) is a fundamental multivariate data analysis method which is
encountered into a variety of areas in neural networks, signal processing, and machine learning. It is an
unsupervised method for reducing the dimensionality of the existing data set and extracting important
information. PCA does not use any output information; the criterion to be maximized is the variance.

PCA can be applied to economically represent the input digit images by projecting them onto a low-
dimensional space constituted by a small number of basis images [3]. These basis images or the
“eigendigits” are derived by finding the most significant eigenvectors of the pixel wise covariance matrix,
after mean centering the data for each attribute. After projection, we use the 1-NN classifier to classify
the digit in the low dimensional space. PCA reduce the dimensions of the dataset from 784 to a lower
value — for ease of computation.

5.1 PCA - The Algorithm

The algorithm used to implement PCA is described in detail below:

1) Mean center the each training digit: The empirical mean or the average digit is calculated for each
group of digits (‘0’,’1’...”9’). After that, it is subtracted from each training digit.

ufm] = i i_:l_}f[m,n]

4

B=X—uh

2) Form the Covariance Matrix: Find the empirical covariance matrix from the outer product of matrix
data set matrix with itself.

C—EB®B|=E[B B = -

j‘\l."

B-B*

3) Eigen decomposition: Get the eigenvectors (columns of Vectors) and eigenvalues (diag of Values).
Also normalize the eigenvalues to relate the values to the transpose of the covariance matrix. These
basis vectors are also labeled as the eigendigits.

vVIicv=D
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4) Sort: Sort the eigenvectors by eigenvalues, and select the ‘k’ most significant eigenvectors

5) Projection: Generate the projection map by projecting each digit onto the k-dimensional
eigenvector space.

Y = W*.Z = KLT{X}.

Below, we represent the sample k (=25, in this case) eigendigits generated by our PCA algorithm for the
digits ‘0’ and ‘9. (Fig. 3)

Fig.3. Sample eigendigits for the numerals 0 and 9, generated by the PCA classifier

6 K-nearest neighbor classifier

This classifier is one of the simplest classifier to implement because it is a brute force method
[4]. The algorithm is used to find the nearest match for a given case to the known cases stored in
memory. The K is used to signify how many votes are used for decision making. It is most optimal to
choose a value of K that is odd so it eliminates a tie between two sets. There are three steps to
implement for this classifier:

First step: compare known samples with the test sample using a distance metric. The distance
metric is used to find the nearest neighbor. The most widely used distance metric is the Euclidean
distance, because it gives a normalized value. Other distance metrics include City-block, and Chebychev,
refer to (Appendix A, Fig. 1). The Euclidean distance is:

D =" (known, — testcase, )’



Second Step: Once we have the distances of the test subject to known subjects, we can rank
them accordingly. If we are given 1000 known samples, we can rank distances of the results from 1 to
1000. The value K denotes the number of ranks to use. For example if K is equal to 99 then the top 99
distance vector value is considered.

Third Step: Considering a case where it is either true or false, within the 99 results the one with
the greatest number is the value of the test case. Then if there were 50 results that point to true and 49
results point to false, then the test sample is true. This is why an odd value is chosen so there would be
no ties. It is important to note that there could be more than 2 cases, so a tie could result even with odd
value of K, for example if there were three sample spaces. A triangle, a circle and a square object, there
could be 40 votes for circle and square out of 99 which would result in a tie. For this case it would be
best to consider their ranking number as well.

For our project we chose K to be 1 so we have implemented a 1-nearest neighbor classifier. We
retrieve the results for 20 samples of each digit so there are a total of 120 votes to consider. We choose
the minimal value of the 20 samples of each digit, so in the end we have 10 values to compare for the
final result, which is the minimal distance vector for the digits 0 to 9. By choosing the minimum value
out of the ten we effectively chosen the most significant vote for what this sample value is.

7 Alternative Designs

From the literature we reviewed we found that the highest accuracies achieved by classifiers on the
MNIST database were 99.05%, by individual classifiers and multiple classifier systems, and 99.3%
(boosted), by multiple neural networks. Below listed are the main schemes that we reviewed, and their
advantages and disadvantages, and the caveats around their implementation.

7.1 Neural Networks

Multilayer Neural Networks trained with the back-propagation algorithm constitute the best
example of a successful Gradient-Based Learning technique. Convolutional Neural Networks are a
special kind of multi-layer neural networks used to recognize visual patterns with extreme variability
(such as handwritten digits), and with robustness to distortions and simple geometric transformations.
LeNet-5 is the latest convolutional network [4], and below is the architecture diagram (Fig. 4). LeNet-5
comprises 7 layers, all of which contain weights as trainable parameters. The values of the input pixels
are normalized to make the mean input roughly 0, and the variance roughly 1, which accelerates
learning. Layer C1, C3 and C5 are convolutional layers with 6, 16 and 120 feature maps respectively.
Each unit in each feature maps are successively connected to the neighboring 5x5 feature maps,
assisting training by localization. The layers S2 and S4 are subsampling layers with 6 feature maps of size
14x14 and 16 feature maps of size 28x28 respectively.
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Fig.4 Architecture of LeNet-5, a convolutional neural network, for digits recognition

Given the high accuracy achieved by this technique, this was our initial proposed algorithm for
this project. However, the implementation of the algorithm is highly complex. Convolutional neural
networks are particularly well suited to hardware implementations because of their regular structure
and low memory requirements for the weights. They also perform more efficiently and are well suited
to the extensively large database of digits. However, from the reviews it has been found that the
training time for these networks are expectedly longer, amounting to 2 to 3 days of CPU time in some
cases for 10 to 20 passes through the training set. Given the limited time scope of the project, and major
emphasis being on being able to review the literature and implement a basic algorithm, we decided to
proceed with the PCA implementation instead.

7.2 Lottery Digit Recognition

Lottery Digit Recognition Based Multi-feature [5], is an alternate implementation of digit
recognition compared to neural network and support vector machine methods. One of the chief
advantages of the system is that it doesn’t require any learning for the system as compared to neural
network recognition system. Their implementation consists of the same steps as our implementations,
pre-process, feature-extraction and classification (multi-features). The main difference is their feature-
extraction and multi-features classification. The features they extract are the end points of the digits,
and depending on the distances of two endpoints they could be connected or deleted. An example of
this system is to consider the circle of nine that is unclosed from the image, depending on how far the
two endpoints are they could be connected to create a closed loop for better classification. Using the
number of endpoints they can classify into smaller sets of digits to compare with eventually ending into
a result. The problem with this implementation is the number of algorithms we need to implement;
therefore we did not choose this solution.

7.3 Stroke based Characterization

User-Independent Online Handwritten Digit Recognition [6], this system uses a local based
recognition system. It considers the stroke of the digit and characterizes them for the classifier, the
different strokes are assigned a number therefore each digit can be encoded by the starting stroke to
ending stroke, such as a 2 is encoded as “78123451” [b]. (Fig. 5)
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Fig. 5 Directional Stroke algorithm feature set

With this feature code, it can be used in simple classifiers. This implementation is good because
it doesn’t require a training system but the main disadvantage is the problem of classifying the strokes.
There are problems with clockwise and counter-clockwise digits. Our solutions is simpler
implementation because it uses a global approach instead of local approach which still gives accurate
recognitions without the amount of work required for localized approach.

8 Test Results

From the test images given to us, we are able to obtain a maximum accuracy of 78.4%. This is
varied by the number of eigenvectors values we consider in comparison of the test sample. To achieve
this result our program considers all 784 eigenvector values in order to get an accuracy of 78.4%; where
as, if we only consider 12 most significant eigenvector values we only get 40.2% accuracy.

As the number of eigenvector values considered are decreased the accuracy of the system
decreases. The diagram below shows the results of the accuracy based of the number of eigenvector
values. (Fig. 6)
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Fig. 6 Accuracy achieved plotted against the number of eigenvalues used

There are several reasons for the 21.6% inaccuracy: The main reason for the system inaccuracy
is because the number of training sample for a digit was not enough. From the results of other
documentation of the same type of project [7], we find that when they use more training sample the
more accurate they can get. But because the scope and time frame of this project is small therefore we
limited the amount samples to test and compare. Another limiting factor is the basic setup of this
project, we are simply using the most basic algorithms for feature extraction and classification therefore
it is hard to have good results compared to a more elaborate designed system. A factor of the system
that changes the accuracy are the number of eigenvector values we consider, increases the number of
significant values we increase the accuracy in a linear fashion. This make sense because the values from
the eigenvectors represents the feature of the digit, the more we use to compare to our test case the
more information we can get from the distance metrics. There are other reasons for inaccuracies such
as poorly written digits, for example:

These are all examples of the digit 9. For the last one it is actually hard for a person to figure out it’'sa 9
instead of a 4. Other convoluted examples are:

78 )+ W

The actual digits are in the following order 2, 1, 7. Given their similar features visually, it would be
difficult to have a mathematical expression for them that is perfectly unique to each digit they belong
to. The increase of samples in a training algorithm will definitely help in the accuracy of the results but in
some cases where the digit looks like something else it would be hard to find a good mathematical
expression for them to be compared by a computer without errors.
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APPENDIX A

Other distance measures used to find the nearest neighbor:

City-block: D(x,p) = Abs (x—p)

Chebychev: D(x,p) =Max (| x—p |)

Fig. 1
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APPENDIX B - SOURCE CODE
[PCA CODE — pcaimg.m]
function [base,mean,projX] = pcaimg(X,k)

% pca analysis of image data
% input: X: vectorized image data

% k: number of eigenvectors you want to keep

% output: base: eilgenvectors

% mean: mean of data

% projX: the projected data in the low-dimensional space.

disp(“eigendecomposition...");

[xdim,ndata] = size(X);

mean = sum(X,2)/ndata; % compute mean of data
X = X-repmat(mean,l,ndata); % substract the mean
cov = X*X"/ndata; % Tform the covariance matrix
[ev,ed]=eig(cov); %eigendecomposition

ed = diag(ed);

% Sort eigenvectors by eigenvalues
[foo,p]=sort(-ed);

ed

ed(p);

ev = ev(:,p);

% Take the top k eigenvectors
base = ev(:,1:k);

% project the data into low-dim space
projX = base"*X;
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[Nearest Neighbor Classifier — NNclassifier.m]

function digit = NNclassifier (Testlmage, Vecs, Mean, ProjecO, Projecl
,Projec2,Projec3,Projec4,Projec5,Projec6,Projec7,Projec8,Projec9)

% This classifier, uses a given test image from the test space

% we need to project the test sample into digit"s 1,2,3,4,5,6,7,8,9,0 space
o individually thant we get the euclidean distance

%

o Finally find the minimal distance to specify the digit for the test case
%

X

X

testsample = Testlmage(:,1);
test = testsample - Mean(:,1);
ProjT0 = Vecs(:,:,1)"*test;
test = testsample - Mean(:,2);
ProjTl = Vecs(:,:,2)"*test;
test = testsample - Mean(:,3);
ProjT2 = Vecs(:,:,3) "*test;
test = testsample - Mean(:,4);
ProjT3 = Vecs(:,:,4) "*test;
test = testsample - Mean(:,5);
ProjT4 = Vecs(:,:,5) "*test;
test = testsample - Mean(:,6);
ProjT5 = Vecs(:,:,6)"*test;
test = testsample - Mean(:,7);
ProjT76 = Vecs(:,:,7) "*test;
test = testsample - Mean(:,8);
ProjT7 = Vecs(:,:,8) "*test;
test = testsample - Mean(:,9);
ProjT8 = Vecs(:,:,9) "*test;
test = testsample - Mean(:,10);
ProjT9 = Vecs(:,:,10)"*test;

for i=1:20
ao(i) = norm(ProjTO - ProjecO0(:,1));
al(i) = norm(ProjT1l - Projecl(:,1));
a2(i) = norm(ProjT2 - Projec2(: i))
a3(i) = norm(ProjT3 - Projec3(:,1));
a4(i) = norm(ProjT4 - Projec4(:,1));
a5(i) = norm(ProjT5 - PrOJeCS(.,i))
a6(1) = norm(ProjT6 - Projec6(:,1));
a7(i) = norm(ProjT7 - Projec7(: i))
a8(i) = norm(ProjT8 - Projec8(:,1));
a9(i) = norm(ProjT9 - Projec9(:,1));

end

minv(1) = min(a0);

minv(2) = min(al);

minv(3) = min(a2);

minv(4) = min(a3);

minv(5) = min(a4);

minv(6) = min(a5);

minv(7) = min(a6);

minv(8) = min(a7);

minv(9) = min(a8);

minv(10) = min(a9);
mm = min(minv);
digit = find (minv==mm) - 1;
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[Main Script — rec.m]

% every image is 28x28 in gray scale (0-255)
% train_images is 300x784 which means that it has 300 training images
% and every image has been comverted in to a vector (1x784) for convenience

clear all
nPrinc = 12;
load train_images.txt;

% Gathering all the zero images
% Open the training images label file
labelfile = "train_labels.txt";
fid = fopen(labelfile, "r);
if fid <O
error(["Cannot get list of images from file " labelfile, """ ]);
end;

ImgZero = []; 1ImgOne = []; ImgTwo = []; |ImgThree = []; ImgFour = [];
ImgFive = []; ImgSix = []; 1ImgSeven = []1; ImgEight = []; ImgNine = [];
Imgs = [1;
ImgCount = [O OO 0OO0OO0O0OO0 0 0];
i=1;
% Pre-process the images
while 1

imgname = fgetl(fid);

iT ~isstr(imgname) % EOF is not a string

break % Exit from loop on EOF
end

imgnum = str2num{imgname) ;
A=vec2mat(train_images(i,:),28);
ImgCount(imgnum+1) = ImgCount(imgnum+1l) + 1;

it (imgnum == 0)

ImgZero(:, ImgCount(imgnum+1)) = (reshape(A®,1,784)%);
elseif (imgnum == 1)

ImgOne(:, ImgCount(imgnum+1)) = (reshape(A®,1,784)%);
elseif (imgnum == 2)

ImgTwo(:, ImgCount(imgnum+1)) = (reshape(A®,1,784)%);
elseif (imgnum == 3)

ImgThree(:, ImgCount(imgnum+1)) = (reshape(A®,1,784)%);
elseif (imgnum == 4)

ImgFour(:, ImgCount(imgnum+1))

(reshape(A*,1,784)");

elseif (imgnum == 5)
ImgFive(:, ImgCount(imgnum+1)) = (reshape(A®,1,784)");
elseif (imgnhum == 6)

ImgSix(:, ImgCount(imgnum+1l)) = (reshape(A®,1,784)%);
elseif (imgnum == 7)

ImgSeven(:, ImgCount(imgnum+1)) = (reshape(A®,1,784)%);
elseif (imgnum == 8)

ImgEight(:, ImgCount(imgnum+1)) = (reshape(A~,1,784)%);
elseif (imgnum == 9)

ImgNine(:, ImgCount(imgnum+1)) = (reshape(A~,1,784)");

13



end
i = i+l;
end

[Vecs(:,:,1),Mean(:,1),ProjecO]
[Vecs(:,:,2),Mean(:,2),Projecl]
[Vecs(:,:,3),Mean(:,3),Projec2]
[Vecs(:,:,4),Mean(:,4),Projec3]
[Vecs(:,:,5),Mean(:,5),Projec4]
[Vecs(:,:,6),Mean(:,6),Projec5]
[Vecs(:,:,7),Mean(:,7),Projec6]
[Vecs(:,:,8),Mean(:,8),Projec7] pcaimg(ImgSeven,nPrinc);

[Vecs(:,:,9),Mean(:,9),Projecs8] pcaimg(ImgEight,nPrinc);

[Vecs(:,:,10),Mean(:,10),Projec9] = pcaimg(ImgNine,nPrinc);

pcaimg(ImgZero,nPrinc);
pcaimg(ImgOne,nPrinc);
pcaimg(ImgTwo,nPrinc);
pcaimg(ImgThree,nPrinc);
pcaimg(ImgFour,nPrinc);
pcaimg(ImgFive,nPrinc);
pcaimg(ImgSix,nPrinc);

accuracy = 0;

load test images.txt;
load test labels.txt;
for check = 1:1000

Testlmage=(test_images(check,:))";
Testvalue=test_labels(check);

value =
NNclassifier(Testlmage,Vecs,Mean,ProjecO,Projecl,Projec2,Projec3,Projec4,Proj
ec5,Projec6,Projec7,Projec8,Projec9);

if Testvalue == value %|| Testvalue == (value + 1) || Testvalue == (value -
D
accuracy = accuracy + 1;
end
end

testResult = accuracy/1000 * 100

14



	1 Introduction
	2 Background and Motivation
	3 System Overview
	4 Pre-Processing
	5 Feature Extraction using Principal Component Analysis
	5.1 PCA – The Algorithm

	6 K-nearest neighbor classifier
	7 Alternative Designs
	7.1 Neural Networks
	7.2 Lottery Digit Recognition
	7.3 Stroke based Characterization

	8 Test Results
	9 REFERENCES
	APPENDIX A
	APPENDIX B – SOURCE CODE

