ECO220Y
Hypothesis Testing:
Type I and Type II Errors
and Power
Readings: Chapter 12, 12.7-12.9

Winter 2012
Lecture 15
A magazine is considering the launch of an online edition. The magazine plans to go ahead only if it’s convinced that more than 25% of current readers would subscribe. The magazine contacts a random sample of 500 current subscribers and 137 of those surveyed expressed interest. Should the magazine go ahead?

\[H_0 : p = \text{?} \]

\[H_A : p > \text{?} \]

- \(\hat{p} = \frac{137}{500} \)
- \(n = 500 \)
P-value approach

- Set significance level: \(\alpha = 0.05 \)
- Calculate test-statistic:

\[
t-\text{statistic} = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}
\]

- Find \(P(z > \text{and} < \text{test-statistic}) - ? \)
- Compare \(p \)-value and significance level
- Conclusion?
Rejection/Critical Region Approach

- Standardized test statistic vs Unstandardized test statistic
- Critical values from table for $\alpha = 0.05$ and two-sided test
- Draw a graph with rejection/acceptance regions
- Conclusion?
- Unstandardized critical value:

$$z_{\alpha/2} \cdot \sqrt{\frac{p_0(1 - p_0)}{n}} + p_0$$
p = 0.25 and n = 500
Estimation
Lecture 15

-1.96 1.96
Fail to reject null

z test statistic

p=0.25, n=500

0.212 0.289
Fail to reject null

0.274

15 .2 .25 .3 .35
Using a confidence interval estimator, can approximate a two-tailed hypothesis test with same α.

- If parameter specified under H_0 is in CI, then fail to reject H_0
- If parameter specified under H_0 is not in CI, then reject H_0 and infer H_A is true

Recall that confidence interval is always in original units; corresponds to unstandardized version of rejection region approach
Assume two-tailed test, i.e. $H_A : p \neq 0.25$

Critical values from table:

Cl: $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

LCL:

UCL:

Important: sampling distribution when we compute CI is centered at \hat{p}, while sampling distribution in hypothesis testing is centered at $p = 0.25$.
95% Confidence Interval
p-hat = 0.274, n = 500

p = 0.25, n = 500
Two-Tailed vs One-Tailed Test

- Economists often use two-tailed tests even if one-tailed seems to be more reasonable.
- This is because two-tailed test is more conservative - less chance of getting statistically significant results.

![Graphs showing two-tailed and one-tailed tests with critical values for alpha=0.05.](image-url)
Type I and Type II Errors

<table>
<thead>
<tr>
<th></th>
<th>H_0 is true state of the world (Innocent)</th>
<th>H_A is true state of the world (Guilty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail to reject H_0 (Acquit)</td>
<td>No error</td>
<td>Type II Error</td>
</tr>
<tr>
<td>Reject H_0 (Convict)</td>
<td>Type I Error</td>
<td>No error</td>
</tr>
</tbody>
</table>

Type I error: reject a true null hypothesis

Type II error: fail to reject a false null hypothesis
Significance level and Type I error

- Significance level is the \textit{maximum} probability of Type I error a researcher is willing to tolerate.
- P-value is the \textit{actual} probability of Type I error.
- What can be done to reduce Type I error?
Type II error and Power

- $P(\text{Type II Error}) = \beta = P(\text{Fail to reject null} | \text{Null is false})$
 - Trade off α and β
 - Decreasing α increases β
- **Power of a test:** the probability of rejecting the null hypothesis when it is false
 - Power $= 1 - \beta$
 - A statistical test with more power is always preferred
- $P(\text{Type II error})$ depends on:
 - Parameter value under H_0 and direction of H_A
 - Significance level α
 - Sample size n
 - True parameter value (ρ)
Finding Type II error

\[P(\text{Type II error}) = P(\text{Fail to reject } H_0 \mid H_0 \text{ is false, } H_A \text{ is true}) \]

\[\beta = P(\hat{p} < \text{critical value} \mid p_A, n, \alpha) \]

\[\uparrow \]

opposite direction of \(H_A \)

\[\beta = P \left(\frac{\hat{p} - p_A}{\sqrt{\frac{p_A(1-p_A)}{n}}} > \frac{p_{\text{critical}} - p_A}{\sqrt{\frac{p_A(1-p_A)}{n}}} \right) \]
Example

Online edition example:

- $H_0 : p = 0.25$ vs $H_A : p > 0.25$
- Significance level $\alpha = 0.05$
- Sample size, $n=500$
- True parameter value, $p=0.28$

\[
\hat{p}_{critical} = 1.645 \times \sqrt{\frac{p_0(1 - p_0)}{n}} + p_0 = 0.28
\]

\[
\beta = P \left(z < \frac{0.28 - 0.28}{\sqrt{\frac{0.28 \times 0.72}{500}}} \right) = P(z < 0) = 0.5
\]

\[
1 - \beta = 1 - 0.5 = 0.5
\]
\(\alpha = 0.05, \beta = 0.5 \)
Effect of significance level, α, on P(Type II error)

Online edition example:

- $H_0 : p = 0.25$ vs $H_A : p > 0.25$
- Significance level $\alpha = 0.01$
- Sample size, $n = 500$
- True parameter value, $p = 0.28$

$$\hat{p}_{critical} = 2.33 \times \sqrt{\frac{p_0(1 - p_0)}{n}} + p_0 = 0.30$$

$$\beta = P \left(z < \frac{0.30 - 0.28}{\sqrt{\frac{0.28 \times 0.72}{500}}} \right) = P(z < 1) = 0.8413$$

$$1 - \beta = 1 - 0.8413 = 0.1587$$
alpha=0.01, beta=0.8413
Effect of sample size on P(Type II error)

Online edition example:

- $H_0 : p = 0.25$ vs $H_A : p \neq 0.25$
- Significance level $\alpha = 0.05$
- Sample size, $n = 200$
- True parameter value, $p = 0.28$

\[
\hat{p}_{critical} = 1.96 \times \sqrt{\frac{0.25(1 - 0.25)}{200}} + 0.25 = 0.31
\]

\[
\beta = P \left(z < \frac{0.31 - 0.28}{\sqrt{0.28 \times 0.72}} \right) = P(z < 0.95) = 0.8289
\]

\[
1 - \beta = 1 - 0.8289 = 0.1711
\]
Effect of parameter value under H_A on P(Type II error)

Online edition example:

- $H_0 : p = 0.25$ vs $H_A : p \neq 0.25$
- Significance level $\alpha=0.05$
- Sample size, $n=500$
- True parameter value, $p=0.30$

\[
\hat{p}_{\text{critical}} = 1.96 \times \sqrt{\frac{0.25(1-0.25)}{500}} + 0.25 = 0.288
\]

\[
\beta = P \left(z < \frac{0.288 - 0.30}{\sqrt{\frac{0.30 \times 0.70}{500}}} \right) = P(z < -0.59) = 0.2776
\]

\[
1 - \beta = 1 - 0.2776 = 0.7224
\]