ECE1371 Advanced Analog Circuits Lecture 8

COMPARATOR & FLASH ADC DESIGN

Richard Schreier richard.schreier@analog.com

Trevor Caldwell trevor.caldwell@utoronto.ca

Course Goals

- Deepen understanding of CMOS analog circuit design through a top-down study of a modern analog system— a delta-sigma ADC
- Develop circuit insight through brief peeks at some nifty little circuits

The circuit world is filled with many little gems that every competent designer ought to know.

Date	Lecture (M 13:00-15:00)			Ref	Homework
2015-01-05	RS	1	MOD1 & MOD2	ST 2, 3, A	1: Matlab MOD1&2
2015-01-12	RS	2	$\mathbf{MODN} + \Delta \Sigma \mathbf{Toolbox}$	ST 4, B	2: $\Delta \Sigma$ Toolbox
2015-01-19	RS	3	Example Design: Part 1	ST 9.1, CCJM 14	3: Swlevel MOD2
2015-01-26	RS	4	Example Design: Part 2	CCJM 18	
2015-02-02	тс	5	SC Circuits	R 12, CCJM 14	4: SC circuit
2015-02-09	ТС	6	Amplifier Design		
2015-02-16	Reading Week– No Lecture				
2015-02-23	тс	7	Amplifier Design		5: SC Int w/ Amp
2015-03-02	RS	8	Comparator & Flash ADC	CCJM 10	
2015-03-09	тс	9	Noise in SC Circuits	ST C	
2015-03-16	RS	10	Advanced $\Delta \Sigma$	ST 6.6, 9.4	Project
2015-03-23	ТС	11	Matching & MM-Shaping	ST 6.3-6.5, +	
2015-03-30	тс	12	Pipeline and SAR ADCs	CCJM 15, 17	
2015-04-06	Exam			Proj. Report Due Friday April 10	
2015-04-13	Project Presentation				

NLCOTD: Linear Transconductor

- Useful in
 - 1 gm-C filter
 - 2 LNA
 - 3 mixer
 - 4 CT $\Delta \Sigma$ ADC

Highlights (i.e. What you will learn today)

- **1 Operation of Example Comparator Circuit**
- 2 Regeneration Time Constant τ
- 3 Metastability, Probability of Error
- 4 Offset, Dynamic Offset, Auto-zeroing
- 5 Flash ADC
- 6 A Bunch of Transconductor Circuits

Review: Latched Comparator From Lecture #4's 1-MHz MOD2

Set/Reset Latch:

Inverter thresholds are chosen so that the inverters respond only after R/S have resolved.

• Falling phase 1 initiates regenerative action S and R connected to a Set/Reset latch.

Phase 1 = High: "Reset" Mode

- Grayed-out devices are off
 ⇒ the active part of the comparator is reset
- R and S are low \Rightarrow the SR latch is in hold mode

Phase 1 Goes Low: "Latch" Mode

ECE1371

Better Design

ECE1371

Responses for Various Vin

8-11

Delay vs. V_{in}

ECE1371

Latch Mode Dynamics

• For V_{in} near the trip point, an inverter is essentially just a transconductor:

• So near balance the comparator looks like this:

- Differential component grows exponentially
- CM component decays exponentially

ECE1371

Metastability

- Metastability is fundamentally unavoidable
- Assuming the universe is continuous and deterministic, a comparator can be unresolved for any length of time

Probability of Error, P_E

$$P_{E} = P\{\text{not resolved by time } t\}$$
$$= P\left\{V_{in} < \exp\left(\frac{t - t_{0}}{\tau}\right)\right\}$$

- Take $t_0 = 100$ ps and $\tau = 20$ ps
- Then for t = 500 ps (1 GHz clock with a halfcycle between the comparator's clock and the clock of the subsequent latch),

$$\boldsymbol{P}_{\boldsymbol{E}} = \boldsymbol{P}\{|\boldsymbol{V}_{\boldsymbol{in}}| < 2 \text{ nV}\}$$

• Assuming V_{in} is uniformly distributed in [-0.5, +0.5] V, $P_E = 2 \times 10^{-9}$ Metastability occurs twice a second!

Metastability Summary

• Metastability is unavoidable

All you can do is make τ small and give enough time for regeneration to make P_E small.

• Supplementary Slides examine the effects of quantized charge and noise

Noise helps a comparator resolve when $V_{in} = 0$ but usually does not reduce P_E

• At best, metastability causes SNR degradation At worst, it causes a system failure.

Offset

 Obvious sources of offset include mismatch in the input differential pair as well as mismatch in the regenerating devices

Dynamic Offset

- Mismatched parasitic capacitance also causes offset 20 mV/fF for this comparator!
- Bad design– Can fix this!

- Reset when CK = 1; regenerates when CK = 0
- x & y don't step if biased properly Mismatch in overlap capacitance still a problem.

Reducing Offset with a Preamp

$$V_{off,tot} = V_{off,amp} + V_{off,comp} / A$$

- + Comparator offset is reduced by preamp gain Amplifier offset dominates.
- + Amplifier also isolates driving stage from "charge kickback"
- Amplifier bandwidth limits speed, especially recovery from overload

Auto-zeroed SC Comparator [J&M Fig 13.17]

- During P1, the inverter/amplifier is biased at its threshold/offset voltage
- During P2, the difference between V_{in} and V_{ref} is amplified

Comparator with Preamp [J&M Fig. 7.16]

 Precharges regeneration nodes low & digital output nodes high

- + No static current
- + Can be used as a comparator Note that input CM voltage defines the bias point during regeneration.

Improved StrongArm Design

 MX provides DC path to ground for leakage currents in case D changes after CK goes high MX is needed to make latch static.

Q

Alternative Arrangement

 Well-defined initial state ⇒ less hysteresis
 [Abidi 2014CICC] "Understanding the Regenerative Comparator Circuit"

Symmetric Latch

Faster than cross-coupled NAND gates

Yang's High-Speed Comparator

• $\tau_{nom} = 6 \text{ ps (!) in 65nm CMOS}$ Used in a CTAS ADC clocked at 4 GHz [Shibata2012].

Dual-Difference Comparator

In any of our comparator circuits, replace: with:

Q: Where should Va- go?

ECE1371

Flash Bubbles

Averaging and Interpolation

8-34

VCO as a Quantizer— Concept

- + Simple
- + Monotonic
- Not linear
- Ill-defined full-scale

Current-Controlled Ring Oscillator (CCRO)

- Oscillation frequency is proportional to current
- \Rightarrow Can make a fairly linear quantizer

CCRO + Phase latch + EXOR = Q!

Improvements to CCRO Quantizer

- Put EXOR before 1st FF and remove 2nd FF To eliminate unnecessary delay.
- Add inverters to increase resolution Must keep f_{osc} constant to maintain full-scale.
- Use 2 rings in a pseudo-differential arrangement To cancel even-order distortion and make mid-scale self-referenced.
- Use multiple rings with phase interpolation to increase resolution without hitting *f*osc ceiling
- Driving the elements of the DACs with the EXOR outputs directly results in *mismatch-shaping*

NLCOTD: Linear Transconductors Degenerated Differential Pair

- + Simple!
- V_{gs} varies nonlinearly with $I_{out} \Rightarrow g_m$ is nonlinear

Force Constant V_{gs}

- I_d constant \Rightarrow V_{gs} constant
- Linearity dependent on current-mirror linearity

- V_{gs} of input devices replicated in cascodes and distortion-cancelling current injected into output
- + All NMOS \Rightarrow fast
- Cancellation depends on matching Should tie bulk to source?

Add Op Amps

- + Linearity limited only by op amp gain and BW
- + High output resistance
- Output compliance depends on input swing

Mirror the Output Current

- + Output compliance is VDD 2 V_{dsat}
- Top of differential pair at VDD V_{gs}

Fold the Output Current

- + Increased headroom for differential pair
- + Increased output resistance

- With BJTs, ratioing the emitter areas creates a well-controlled offset
- With the right offset, the cubic term in the nonlinearity is zero!

$$n = 2 + \sqrt{3} = 3.73 \approx 15/4$$

MOS Quad

 Supposedly can get less distortion than a degenerated differential pair by fiddling with W/L

What You Learned Today

- **1** Operation of Example Comparator Circuit
- 2 Regeneration Time Constant τ
- 3 Metastability, Probability of Error
- 4 Offset, Dynamic Offset, Auto-zeroing
- 5 Flash ADC
- 6 A Bunch of Transconductor Circuits

Supplementary Slides (Regarding Metastability)

Quantized Charge Helps?

- If C = 20 fF, then 1 electron yields 8 μ V
- V_{in} = 2 nV and hence metastability impossible?

V_{in} 8μV↓ Voffset

- + Unless V_{offset} is within 2 nV of one of the discrete V_{in} levels, metastability can't happen
- But if V_{offset} is within 2 nV of an allowed V_{in} level, metastability will be abnormally frequent
- Offset drift will tend to make metastability appear/disappear sporadically (?)

Noise Helps?

- kT/C = 500 μ V, so it is impossible to guarantee that metastability will result even if V_{in} = 0
- + Noise does help a comparator resolve if it is metastable
- But for any given noise (random initial condition), there is always an input which results in metastability
- Noise makes it hard to set initial conditions that will result in metastability, but does not reduce the probability of error

What About Noise During Regeneration?

• Noise from the g_ms prevents metastability?

Math Break: Filtered White Noise

• The power of the output is the product of the PSD and the power gain of the filter

• Example:
$$h(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}$$

$$\Rightarrow \sigma_y^2 = ST$$

- Variance of V increases linearly with time
- "Random Walk" or "Brownian Motion" For any given increment of time Δt , the change in *V* is a random variable with constant variance $\delta(t) \equiv V(t) - V(t - \Delta t) \Rightarrow \sigma_{\delta}^2 = \text{constant}$

Today's Application

$$h(t) = \begin{cases} e^{t/\tau} & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}$$

$$\sigma_y^2 = \frac{S\tau}{4} \left(e^{\frac{2T}{\tau}} - 1 \right)$$

Another Math Fact: PDF of a Sum

- Suppose x and y are two independent random variables with probability density functions (PDFs) ρ_x(x) and ρ_y(y)
- Then the PDF of their sum is the convolution of the individual PDFs

$$\boldsymbol{z} = \boldsymbol{x} + \boldsymbol{y} \Rightarrow \rho_{\boldsymbol{z}}(\boldsymbol{z}) = \int_{-\infty}^{\infty} \rho_{\boldsymbol{x}}(\boldsymbol{x}) \rho_{\boldsymbol{y}}(\boldsymbol{z} - \boldsymbol{x}) d\boldsymbol{x}$$

Back to Circuits $S = (8/3)kTg_m$ g_m g_m

• Noise from the g_ms prevents metastability?

Differential Circuit

Making Numbers...

- Assume $g_m = 1 \text{ mA/V}$, C = 20 fF, t = 400 ps $\Rightarrow \tau = 20 \text{ ps}$; 20 τ to resolve
- If v₀ uniformly distributed in [-2,+2] mV, then 1st term is uniformly distributed in [-1,+1] MV
- Standard deviation of 2nd term is 250 kV Equivalent to a 0.5-mV initial condition
- Noise during regeneration helps when the input is known to be small, but is usually negligible compared to the exponential growth of the initial conditions