Expectations and the Neutrality of Money

Robert Lucas JR.

Zhe Li

SUFE
Objective and motivation

- Philips curve
- Monetary business cycles
Source of data: Economic Report of the President, 1985 pages 239, 266.
Non-neutrality of money

• Standard Neo-classical model: Money is neutral

\[
\frac{M}{Y} = P
\]
How to Model Non-neutrality of money? — all forms of "money illusion" are rigorously excluded

Difficulties:
- All prices are market clearing
- All agents behave optimally in light of their objectives and expectations
- Expectations are formed optimally

Neoclassical with incomplete information
- Phelps (1969) - Philips curve
- Lucas - Monetary business cycle
How to Model Non-neutrality of money? — real and nominal shocks

- **Two shocks**
 - Real shock
 - Exchange takes place in two physically separated markets
 - Allocation of traders stochastic
 - Money supply is stochastic

- **One signal and two unknown shocks**
 - Traders observe prices in their own market but not the other market
 - An increase in price could be caused by increased money supply or increased demand (number of buyers)
Environment

- Overlapping generations model - live for two periods
 - Each period, N identical individuals are born
 - Population $2N$, N of age 0, N of age 1
 - Supply of labor: each person provides n during the first period of life
 - Production: n units of labor generate n units of output
 - $c^0 + c^1 \leq n, c^0, c^1, n \geq 0$
- Money could be given to each old at the beginning of each period
- Quantity of transfer: proportional to the pretransfer holdings of each
- No inheritance
Exchange and allocation of traders

- **Exchange:**
 - Young supplies consumption goods
 - Old has money

- **Two separate markets:**
 - Old people are equally allocated across the two markets
 - New borns are stochastic
 - one $\theta/2$, the other $1 - \theta/2$
Money and information

- Information of money supply
 - Pretransfer money: known to all agents, \(m \)
 - Posttransfer balances: \(m' \)
 - old knows
 - young does not know exactly, conjecture from price signal

- Evolution of money

\[
m' = xm
\]

\(x \) independent across time, identical in different periods, continuous density function \(f \) on \((0, \infty)\)
Allocation variable \(\theta \) is unknown, conjecture from price signal
\(\theta \) is i.i.d with \(g \) on \((0, 2)\)
Preferences

- **Old:**

 Spend all the money inelastically

Young

\[U(c, n) + E \{ V(c') \} \]

Assume

\[U_{cn} + U_{nn} < 0, \; U_{cc} + U_{cn} < 0 \]

\[
\frac{c'V''(c')}{V'(c')} \leq -a < 0
\]

\[
\lim_{c' \to 0} V'(c') = \infty, \quad \lim_{c' \to \infty} V'(c') = 0
\]
Optimization problem

\[
\max_{c,n,\lambda \geq 0} \left\{ U(c, n) + \int V \left(\frac{x' \lambda}{p'} \right) dF(x', p' | m, p) \right\}
\]

Budget constraints:

\[
p c + \lambda = p n
\]

\[
c' = \frac{x' \lambda}{p'}
\]

\(\lambda\) money from sale

\(F(x', p' | m, p)\) : distribution of \((x', p')\) conditional on \(m,\) and \(p\)
Solution

- Kuhn-Tucher conditions

\[U_c(c, n) - p\mu \leq 0, \text{ with equality if } c > 0 \]
\[U_n(c, n) + p\mu \leq 0, \text{ with equality if } n > 0 \]
\[p(n - c) - \lambda \leq 0, \text{ with equality if } \mu > 0 \]
\[\int V' \left(\frac{x'\lambda}{p'} \right) \frac{x'}{p'} dF(x', p'|m, p) - \mu \leq 0, \text{ with equality if } \lambda > 0 \]
Solution

- Kuhn-Tucher conditions

 \[U_c(c, n) - p\mu \leq 0, \text{ with equality if } c > 0 \]
 \[U_n(c, n) + p\mu \leq 0, \text{ with equality if } n > 0 \]
 \[p(n - c) - \lambda \leq 0, \text{ with equality if } \mu > 0 \]
 \[\int V' \left(\frac{x'\lambda}{p'} \right) \frac{x'}{p'} dF(x', p'|m, p) - \mu \leq 0, \text{ with equality if } \lambda > 0 \]

- Equilibrium money:

 \[\frac{mx}{\theta} = \lambda \]
Solution

- Kuhn-Tucker conditions

\[U_c(c, n) - p\mu \leq 0, \text{ with equality if } c > 0 \]

\[U_n(c, n) + p\mu \leq 0, \text{ with equality if } n > 0 \]

\[p(n - c) - \lambda \leq 0, \text{ with equality if } \mu > 0 \]

\[\int V' \left(\frac{x'\lambda}{p'} \right) \frac{x'}{p'} dF(x', p'|m, p) - \mu \leq 0, \text{ with equality if } \lambda > 0 \]

- Equilibrium money:

\[\frac{mx}{\theta} = \lambda \]

- Function for price

\[h\left(\frac{\lambda}{p} \right) \frac{1}{p} = \int V' \left(\frac{x'\lambda}{p'} \right) \frac{x'}{p'} dF(x', p'|m, p) \]
Conclusion

- Prove the existence of the equilibrium
- Characterize price function: increases in x
- Money’s short-run real effect